簡易檢索 / 詳目顯示

研究生: 宜澤輔
Yi, Tse-Fu
論文名稱: 以厭氧流體化薄膜生物反應器處理煉鋼冷軋廢水之研究
Anaerobic Fluidized Membrane Bioreactor for Steel-Making Cold-Rolling Wastewater Treatment
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 121
中文關鍵詞: 厭氧流體化薄膜生物反應器冷軋廢水甲烷菌生物性甲烷潛勢批次實驗
外文關鍵詞: AFMBR, cold rolling wastewater, methanogens, BMP batch
相關次數: 點閱:145下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球因著工業發展以及人口成長,水資源的需求相對增加,同時,對於水資源的保護也日漸重要。因此,多數的工業或民生廢水在排放至承受水體之前,都會經過一系列的處理。隨著全球能源日漸短缺,廢水處理程序中,使用低耗能之處理程序的意識也逐漸備受重視。若以生物處理方式的觀點來看,厭氧處理程序相對較好氧處理程序節省能源,同時在厭氧處理程序中,同時能夠產生可作為能源之氣體(Biogas),但因著傳統厭氧消化程序需要較長的時間,且有出流水水質不佳的可能,許多研究與改善方法相繼被提出。其中,厭氧流體化薄膜生物反應器(AFMBR)在厭氧情況下,結合薄膜與流體化,使流體化之單體控制薄膜阻塞之問題。本研究係探討厭氧流體化薄膜生物反應器處理煉鋼所產生之冷軋廢水效能,包含化學需氧量(COD)、總有機碳(TOC)與甲烷生成,並利用厭氧批次實驗與分子生物技術作為模槽參考。
    批次實驗分為粒狀活性碳吸附實驗與厭氧產甲烷實驗。粒狀活性碳吸附批次實驗結果顯示,每1 g粒狀活性碳能夠吸附6.7 mg-TOC。厭氧產甲烷實驗結果顯示,在第一次植種後所取出之活性碳與汙泥無法利用廢水產生甲烷,其產生氣體以二氧化碳為主,若用1 g/L之葡萄糖,會生成氫氣,但甲烷產生情況皆不佳。在第二次植種後所取出之活性碳與汙泥能夠利用廢水與葡萄糖產生甲烷,且活性碳在產生甲烷效能比離心汙泥佳。若使用批次推估反應槽活性碳微生物與汙泥微生物的貢獻量則可以得知,不論COD去除或是甲烷產生表現上,在活性碳上微生物均有較高的貢獻。除此之外,由批次COD去除的情況配合活性碳吸附實驗也可得知,在批次進行的第一天內主要以活性碳吸附為主,活性碳會在5小時內快速吸附水中物質,使COD濃度下降,之後才由附著在活性碳上微生物慢慢分解水中物質,產生甲烷。
    反應模槽共操作302天,共分為三個時期,分別為0-155第二次植種前、155-218 第二次植種後,以及218-302穩定期。在第一時期模槽沒有甲烷產生,其產生之二氧化碳因進流水高pH值而溶於水中,並且從出流水排出。而第二時期因著薄膜壓力與汙泥濃度的控制較為不穩定。在穩定期COD與TOC進流濃度為870 mg/L與159 mg-C/L,且去除效率分別為90%與91%,操作之HRT為2.3天。氣體產率部分,由濕式流量計結合TCD分析,每天約可產生14 L氣體,其中包含10 L甲烷與4 L二氧化碳。在第三時期OLR為0.38 kg COD/m3/d,且甲烷產率與甲烷回收率為0.064 L CH4/g CODremoved及16.8%.
    而在分子生物技術分析(t-RFLP)的結果中,AFMBR內活性碳與汙泥有不同的甲烷菌群組成比例。不論在第二次植種前或後,methanosaeta在活性碳上佔大多數,但在第二次植種後有出現其他像是methanomethylovorans等菌群。然而在汙泥中,第一階段到第三階段微生物族群改變較大,隨著methanosaeta的增加methnomethylovorans 與methanosarcina 相對減少趨勢。

    With the increasing concern of water protection, wastewater treatment of industrial or domestic is more and more important. Nowadays, the treatment technology is efficient enough. Additionally, due to more attention on energy restricted and global warming, treatment process which saves more energy or even creates energy is proposed to replace the traditional process. In wastewater treatment aspect, anaerobic fluidized membrane bioreactor (AFMBR) has been proposed to treat domestic wastewater. However, AFMBR utilized in industrial wastewater has not been understood completely. In this study, an AFMBR pilot treating steeling making cold-rolling wastewater was investigated. Also, several batch tests and molecular biotechnology were seen as comparison of the pilot.
    There were three periods for AFMBR operation. The first period is from day 0 to day 155 before second time inoculation. The second period is from day 155 to 218 with MLSS control. The last period is steady operation after 218 day.
    The adsorption effect of granular activated carbon (GAC) on cold-rolling wastewater indicated that 6.7 mg-TOC could be adsorbed by 1 g of GAC, and the GAC in pilot would be saturated in 16 days. The bio-methane potential (BMP) batch test and result of gas production for AFMBR pilot both showed that methane wasn’t produced before second time inoculation but detectable methane appeared after second time inoculation. Besides, the batch results also showed that the performance of GAC in producing methane and COD removal is better than the performance of sludge. However, decrease of COD concentration in the beginning is caused by GAC adsorption rather than microorganism degradation. The COD and TOC removal efficiency of AFMBR pilot are 90% and 91% when HRT of pilot is 2.3 days. OLR of pilot is 0.38 kg COD/m3/d. Methane yield of AFMBR pilot is 0.064 L CH4/g CODremoved with 16.8% methane recovery efficiency. Average 10 L of methane and 4 L of CO2 can be produced from AFMBR pilot per day. The MLSS and MLVSS concentration in AFMBR pilot might affect transmembrane pressure (TMP). Thus, MLSS concentration should be lower than 1500 mg/L in order to maintain TMP. The t-RFLP results of GAC and sludge are different. For GAC, methanosaeta is majority no matter before or after second time inoculation. Besides, other methanogens appeared after second time inoculation such as methanosarcina and methanomethylovorans. For sludge after second time inoculation, ratio of methanomethylovorans and methanosarcina decreased with increase ratio of methanosaeta. However, ratio of methanosaeta started to decrease with ratio of other methanogens and unknown increase.

    Abstract I 中文摘要 III 致謝 IV Contents V Figure List VIII Table List XI CHAPTER 1. Introduction 1 1.1、 Original 1 1.2、 Objective 3 CHAPTER 2. Literature Review 5 2.1、 Anaerobic Treatment 5 2.1.1. Mechanism of Anaerobic process 5 2.1.2. Comparison of Anaerobic and Aerobic Process 5 2.1.3. Effect factor of Anaerobic process 6 2.2、 Anaerobic Fluidized Membrane Bioreactor 10 2.2.1. Anaerobic Fluidized Bed Reactor (AFBR) 10 2.2.2. Anaerobic Membrane Bioreactor (AnMBR) 11 2.2.3. Utilization of Anaerobic Fluidized Membrane Bioreactor 21 2.3、 Cold-Rolling Wastewater 24 2.3.1. Summary of Steel-Making process 24 2.3.2. Composition of Cold-Rolling Wastewater 24 2.3.3. Treatment process of Cold-Rolling Wastewater 26 2.4、 The Application of molecular biotechnology 28 CHAPTER 3. Materials and Methods 33 3.1、 Pilot-scale anaerobic fluidized membrane bioreactor 33 3.2、Batch test 38 3.2.1. Granular activated carbon adsorption test 38 3.2.2. Bio-methane potential batch test (BMP test) 39 3.3、 Analysis method 43 3.3.1. Pilot-scale AFMBR water quality analysis 43 3.3.2. Batch experiment water quality analysis 43 3.3.3. Gas Chromatography Thermal Conductivity Detector 44 3.3.4. Combustion Analyzer with Static Pressure Concentration NDIR Detection 44 3.3.5. Scanning Electron Microscope (SEM) 45 3.4、 Molecular biotechnology analysis 47 3.4.1. DNA extraction 47 3.4.2. Polymerase Chain Reaction (PCR) 48 3.4.3. Termal restriction fragment length polymorphism (T-RFLP) 50 CHAPTER 4. Results and Discussion 55 4.1、 Cold-rolling wastewater adsorption by granular activated carbon (GAC) batch experiment result 55 4.2、 Batch experiment and AFMBR pilot analysis in the first period (period 1) 57 4.2.1. BMP batch test for GAC in pilot before and after first inoculation 57 4.2.2. BMP batch test using GAC or sludge from pilot with influent or glucose as carbon source. 60 4.2.3. BMP batch test for influent using sludge from full-scale UASB 64 4.2.4. COD and TOC analysis results in the first period. 65 4.2.5. SS, VSS, MLSS and MLVSS Samples Analysis Results in the first period. 68 4.2.6. Transmembrane pressure (TMP) monitoring 71 4.3、 Batch experiment and AFMBR pilot analysis in the second period (period 2) 73 4.3.1. BMP batch test using GAC and sludge with pilot influent and glucose after second time inoculation 73 4.3.2. COD and TOC analysis results in the second period 77 4.3.3. SS, VSS, MLSS and MLVSS Samples Analysis Results in the second period 80 4.3.4. Transmembrane pressure (TMP) monitoring 82 4.4、 Batch experiment and AFMBR pilot analysis in the third period (period 3) 84 4.4.1. BMP batch test using GAC and sludge with pilot influent and glucose after second time inoculation 84 4.4.2. COD and TOC analysis results in the third period 91 4.4.3. SS, VSS, MLSS and MLVSS Samples Analysis Results in the third period 93 4.4.4. Transmembrane pressure (TMP) monitoring 96 4.5、 Pilot-Scale AFMBR Parameter Analysis 97 4.5.1. Three periods water quality analysis comparison and pH, ORP, temperature monitoring. 97 4.5.2. Flow Rate of Permeate and Hydraulic Retention Time 100 4.5.3. Gas Production and Composition 102 4.5.4. Pilot Parameter and Efficiency Evaluation Analysis 104 4.5.5. Scanning Electronic Microscope 108 4.6、 Molecular Biotechnology 109 CHAPTER 5. Conclusion 115 References 117 Appendix 121

    Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., "Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms", Applied and environmental microbiology, 58, 2,614-623, 1992
    Babbitt, Harold E. and Baumann, Edward Robert. 1958. Sewerage and sewage treatment. 8th. Wiley, New York,.
    Bae, J., Yoo, R., Lee, E., and McCarty, P. L., "Two-stage anaerobic fluidized-bed membrane bioreactor treatment of settled domestic wastewater", Water Science and Technology, 68, 2,394-399, 2013
    Bae, Jaeho, Shin, Chungheon, Lee, Eunyoung, Kim, Jeonghwan, and McCarty, Perry L., "Anaerobic treatment of low-strength wastewater: A comparison between single and staged anaerobic fluidized bed membrane bioreactors", Bioresource Technology, 165, 75-80, 2014
    Batstone, D.J. , Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. , and Vavilin, V.A., "The IWA Anaerobic Digestion Model No 1 (ADM1)", Water Science and Technology, 45, 10,65-73, 2002
    Blanco, V. D., Encina, P. A. G., and Fdzpolanco, F., "Effects of Biofilm Growth, Gas and Liquid Velocities on the Expansion of an Anaerobic Fluidized-Bed Reactor (Afbr)", Water Research, 29, 7,1649-1654, 1995
    Buswell, A. M. and Sollo, F. W., Jr., "The mechanism of the methane fermentation", Journal of the American Chemical Society, 70, 5,1778-1780, 1948
    Chan, Yi Jing, Chong, Mei Fong, Law, Chung Lim, and Hassell, D. G., "A review on anaerobic–aerobic treatment of industrial and municipal wastewater", Chemical Engineering Journal, 155, 1-2,1-18, 2009
    Chen, Y., Cheng, J. J., and Creamer, K. S., "Inhibition of anaerobic digestion process: a review", Bioresour Technol, 99, 10,4044-4064, 2008
    Colleran, E., Finnegan, S., and Lens, P., "Anaerobic Treatment of Sulfate-Containing Waste Streams", Anton Leeuw Int J G, 67, 1,29-46, 1995
    Colleran, E., Pender, S., Philpott, U., O'Flaherty, V., and Leahy, B., "Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater", Biodegradation, 9, 3-4,233-245, 1998
    Dutta, Kasturi, Lee, Ming-Yi, Lai, Webber Wei-Po, Lee, Chien Hsien, Lin, Angela Yu-Chen, Lin, Cheng-Fang, and Lin, Jih-Gaw, "Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor", Bioresource Technology, 165, 42-49, 2014
    Elferink, S. J. W. H., Visser, A., Pol, L. W. H., and Stams, A. J. M., "Sulfate Reduction in Methanogenic Bioreactors", Fems Microbiol Rev, 15, 2-3,119-136, 1994
    Gander, M., Jefferson, B., and Judd, S., "Aerobic MBRs for domestic wastewater treatment: a review with cost considerations", Sep Purif Technol, 18, 2,119-130, 2000
    Gao, D. W., Hu, Q., Yao, C., and Ren, N. Q., "Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions", Bioresour Technol, 159, 193-198, 2014
    Grethlein, Hans E., "Anaerobic Digestion and Membrane Separation of Domestic Wastewater", Journal (Water Pollution Control Federation), 50, 4,754-763, 1978
    Harada, Hideki, Uemura, Shigeki, and Momonoi, Kiyoshi, "Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate", Water Research, 28, 2,355-367, 1994
    Heijnen, J. J., Mulder, A., Enger, W., and Hoeks, F., "Review on the application of anaerobic fluidized bed reactors in waste-water treatment", The Chemical Engineering Journal, 41, 3,B37-B50, 1989
    Huang, Zhi, Ong, Say L., and Ng, How Y., "Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling", Water Research, 45, 2,705-713, 2011
    Iza, J., "Fluidized Bed Reactors for Anaerobic Wastewater Treatment", Water science and Technology, 24, 8,109-132, 1991
    Kao, Nien-Hsin, Su, Ming-Chien, and Huang, Wen-Chun, "Study and engineering application of an MBR in treating cold-rolled steel wastewater", Desalination and Water Treatment, 56, 3,565-573, 2014
    Kato, Mario T., "The anaerobic treatment of low strength soluble wastewater", 1994
    Kayhanian, Masoud, "Performance of a high-solids anaerobic digestion process under various ammonia concentrations", Journal of Chemical Technology & Biotechnology, 59, 4,349-352, 1994
    Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., and Bae, J., "Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment", Environ Sci Technol, 45, 2,576-581, 2011
    Koster, I. W. and Lettinga, G., "Anaerobic digestion at extreme ammonia concentrations", Biological Wastes, 25, 1,51-59, 1988
    Le-Clech, Pierre, Chen, Vicki, and Fane, Tony A. G., "Fouling in membrane bioreactors used in wastewater treatment", Journal of Membrane Science, 284, 1–2,17-53, 2006
    Lee, Ryunkyung, McCarty, Perry L., Bae, Jaeho, and Kim, Jeonghwan, "Anaerobic fluidized membrane bioreactor polishing of baffled reactor effluent during treatment of dilute wastewater", Journal of Chemical Technology & Biotechnology, 90, 3,391-397, 2015
    Lin, Hongjun, Peng, Wei, Zhang, Meijia, Chen, Jianrong, Hong, Huachang, and Zhang, Ye, "A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives", Desalination, 314, 169-188, 2013
    Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J., "Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA", Applied and environmental microbiology, 63, 11,4516-4522, 1997
    Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K. H., and Wagner, M., "Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment", Applied and environmental microbiology, 68, 10,5064-5081, 2002
    Ma, Huanhuan, Li, Zifu, Yin, Fubin, Kao, William, Yin, Yi, and Bai, Xiaofeng, "Study on anaerobic treatment of hazardous steel-mill waste rolling oil (SmWRO) for multi-benefit disposal route", Bioresource Technology, 151, 106-112, 2014
    Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., and Horn, H., "Pilot-scale anaerobic submerged membrane bioreactor (AnSMBR) treating municipal wastewater: the fouling phenomenon and long-term operation", Water Science & Technology, 64, 9,1804-1811, 2011
    Meng, Fangang, Chae, So-Ryong, Drews, Anja, Kraume, Matthias, Shin, Hang-Sik, and Yang, Fenglin, "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water Research, 43, 6,1489-1512, 2009
    Muyzer, Gerard, De Waal, Ellen C, and Uitterlinden, Andre G, "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA", Applied and environmental microbiology, 59, 3,695-700, 1993
    Sanz, I. and Fdzpolanco, F., "Anaerobic Treatment of Municipal Sewage in Uasb and Afbr Reactors", Environ Technol Lett, 10, 5,453-462, 1989
    Shin, C., Lee, E., McCarty, P. L., and Bae, J., "Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater", Bioresource Technology, 102, 21,9860-9865, 2011
    Shin, Chungheon, McCarty, Perry L., Kim, Jeonghwan, and Bae, Jaeho, "Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)", Bioresource Technology, 159, 95-103, 2014
    Song, Hong Quan, Li, Su Qin, and Min, Xiao Li, "Study on the Treatment of Cold Rolling Wastewater by Using Bio-Fluidized Bed", Advanced Materials Research, 356-360, 78-82, 2011
    Wiegel, J., "Temperature Spans for Growth - Hypothesis and Discussion", Fems Microbiol Lett, 75, 2-3,155-169, 1990
    Yoo, Rihye, Kim, Jeonghwan, McCarty, Perry L., and Bae, Jaeho, "Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system", Bioresource Technology, 120, 133-139, 2012
    Zhang, B., Zhang, L. L., Zhang, S. C., Shi, H. Z., and Cai, W. M., "The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion", Environmental technology, 26, 3,329-339, 2005
    Zhang, Zhen-Peng, Tay, Joo-Hwa, Show, Kuan-Yeow, Yan, Rong, Tee Liang, David, Lee, Duu-Jong, and Jiang, Wen-Ju, "Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor", International Journal of Hydrogen Energy, 32, 2,185-191, 2007
    李雅菁, "針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究", 國立成功大學環境工程學系碩士論文, 2010
    洪鈺清, "以分子生物技術評估TFT-LCD廢水中降解TMAH之甲烷菌群變化", 國立成功大學環境工程學系碩士論文, 2012
    張婷婷, "除氮系統中與無氧氨氧化菌共存之微生物組成分析", 國立中興大學環境工程學研究所碩士論文, 2009
    黃文俊, "利用薄膜生物反應器(MBR)處理鋼鐵冷軋廢水之研究與工程應用", 2012
    楊英賢, "活性碳厭氧流體化床處理環類廢水程序之技術開發", 1994

    無法下載圖示 校內:2021-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE