| 研究生: |
張育昕 Chang, Yu-Hsin |
|---|---|
| 論文名稱: |
探討以串級式長週期鈮酸鋰波導光柵為設計基礎之梳形濾波器 Investigation of Lithium Niobate Comb Filters based on the Cascade Long-Period Waveguides Gratings |
| 指導教授: |
莊文魁
Chuang, Ricky Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 光學波導 、波分多工器 、串級式長週期波導光柵 、質子交換 、質子交換濕式蝕刻法 、相位光柵 、波紋光柵 、梳形濾波器 |
| 外文關鍵詞: | long-period waveguides gratings, proton exchange, proton-exchanged wet etching, comb filter |
| 相關次數: | 點閱:147 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長週期光纖光柵(Long-period fiber grating, LPFG)已被廣泛研究與應用在光纖通訊系統,但是光纖並不適合做小型且低成本的元件,故無法滿足量產以及積體化的需求,為了突破長週期光柵在光纖上的限制,長週期波導光柵(Long-period waveguide grating, LPWG)被提出研究以及實現。由於LPWG在波導材料選擇上比LPFG豐富許多,因此能展現出更加靈活性的設計和製作於光學波導應用上。由於傳統的光柵濾波器所工作的單一波長已經無法滿足需要過濾多個波長的特殊頻譜,進而衍生出如波分多工器(Wevelength-division multiplexing, WDM)此類工作波長為多波長元件,但此類元件多利用兩個或兩個以上的獨立濾波器去達到其工作原理,在積體化上將會變得更加困難,因此本實驗利用串級式的3-dB長週期光柵來達到多個抑制頻帶,則可滿足積體化的需求。
本實驗利用二次質子交換成功地在LiNbO3基板上製作出串級式長週期波導光柵元件,其元件週期為Λ=50μm。第一次質子交換主要是製作平面波導披覆層,其溫度為280oC,時間為4小時,接著熱退火溫度為400oC,時間為2小時,而第二次質子交換主要是製作波導層,其溫度為280oC,時間為2小時。本實驗利用三次質子交換以及質子交換濕式蝕刻法(proton-exchanged wet etching)兩種不同的技術來實現光柵結構。其一經由第三次質子交換製作出相位光柵(phase grating),其溫度為280oC,時間為30分鐘;其二經由質子交換濕式蝕刻法製作出波紋光柵(corrugated grating),蝕刻速率為0.011μm/min,蝕刻深度為0.1μm。
本實驗利用串級式長週期光柵來實現窄頻帶多通道的穿透頻譜,即為梳形濾波器(comb filter)之穿透頻譜。可藉由改變兩組光柵之間的相隔距離d來調整頻譜通道間距S(channel spacing),本實驗對頻譜通道間距S的變化進行量測,同時相隔距離d的改變由12至22mm。量測結果顯示元件之光波長抑制對比度(dip contrast)最大可達到18.25dB,而在相隔距離d=22mm時,可達到最小通道間距S=2.45nm,可觀察到通道間距S隨著相隔距離d的增加而縮小。
We propose a design of the cascade long-period waveguides gratings (LPWGs) on lithium niobate (LiNbO3) substrates. In this work, the channel waveguides are buried in slab cladding by two-step proton exchange, and the gratings are subsequently produced by three-step proton exchange or proton-exchanged wet etching.
A narrow-band multichannel transmission spectrum formed by a cascade long-period waveguides gratings reveals a typical transmission spectrum of a comb filter. The spectral channel spacing S can be adjusted by simply changing the separation d between the first and the second gratings. The variation of the spectral channel spacing S is measured when the grating separation d is changed from 12 to 22mm. The measurement results demonstrate the maximum dip contrast is close to 18.25dB and the narrowest channel spacing S is about 2.45nm in the case of the grating separation d is 22mm. Note that the channel spacing S decreases with increasing grating separation d.
第一章
[1] Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, pp. 440-445, 1981.
[2] Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp. 45, 1973.
[3] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., vol. 27, pp. 497-506, 1979.
[4] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits,” McGraw-Hill Book Company, 1989.
[5] R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., vol. 21, no. 17, pp. 738-740, 1985.
[6] S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., vol. 21, no. 17, pp. 737-738, 1985.
[7] S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[8] F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo.Tech. Lett., vol. 7, no. 5, pp. 535-537, 1995.
第二章
[1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol., vol. 14, pp. 58-65, Apr. 1996.
[2] V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett., vol. 22, pp. 648-650, May 1997.
[3] M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[4] A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am., vol. 62, pp. 1267-1972, Nov. 1972.
[5] D. S. Starodubov, V. Grubsky, and J. Feinberg, “Adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[6] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,” IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005.
[7] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,” Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
[8] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
[9] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
[10] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[11] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
[12] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,” Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
[13] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,” Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
[14] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
[15] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,” IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
[16] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng., vol. 43, pp. 342-345, Feb. 2004.
[17] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005.
[18] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
[19] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
[20] Yiu Man Chu, Kin Seng Chiang, and Qing Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” APPLIED OPTICS, vol. 45, no. 12, pp. 2755-2760, Apr. 2006.
[21] Yukun Bai and Kin Seng Chiang, “Analysis and design of long-period waveguide-grating couplers,” JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. 12, pp. 4363-4373, Dec. 2005.
[22] Guo XiaoWei, Zhang XiaoXia, Li HePing, Liu Yong and Liu YongZhi, “A wide tuning range electro-optic filter based on long-period waveguide grating,” Chinese Sci Bull, vol.55 no.13, pp. 1338−1342, May 2010.
[23] Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” OPTICS EXPRESS, vol. 14, no. 26, pp. 12644-12654, Dec. 2006.
[24] Wei Jin and Kin Seng Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” OPTICS LETTERS, vol. 40, no. 2, pp. 237-240, Jan. 2015.
[25] Young-Bo Cho, Byung-Ki Yang, Joo-Hyung Lee, Jun-Bo Yoon, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 20, no. 7, pp. 520-522, Apr. 2008.
[26] Qing Liu, Zhonghua Gu, Jack Sheng Kee, and Mi Kyoung Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” OPTICS EXPRESS, vol. 22, no. 24, pp. 29954-29963, Dec. 2014.
[27] Byeong Ha Lee, Junji Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” APPLIED OPTICS, vol. 38, no. 16, pp. 3450-3459, June 1999.
[28] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
[29] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
[30] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
[31] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
[32] Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, pp. 241115, June 2005.
[33] D. S. Starodubov, V. Grubsky, and J. Feinberg, “Adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[34] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
[35] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
[36] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
[37] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[38] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Comm., vol. 208, pp. 321-327, Jul. 2002.
[39] H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett., vol.10, no. 11, pp. 1596-1598, Nov. 1998.
[40] Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Optics Communications, pp. 233-243, 2005.
[41] Y. Liu, J.A.R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Optics Communications, pp. 27-31, June 1999.
[42] K. M. Salas-Alcántara, I. Torres-Gómez, D. Monzón-Hernández, A. Martínez-Ríos, “Micro-displacement sensor using a Mach-Zehnder interferometer with long-period gratings,” SPIE, vol. 8287, pp. 82870Z-1, 2011.
[43] Jong H. Lim, Hyun S. Jang, and Kyung S. Lee, “Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” OPTICS LETTERS, vol. 29, no. 4, pp. 346-348, Feb. 2004.
第三章
[1] R.S.Weis and T.K.Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure” Appl. Phys. Lett. ,vol.37, pp. 171-203, 1985.
[2] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice Hall.
[3] S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Comm., vol. 17, pp. 332-335,1976
[4] http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3%20Wafers.html.
[5] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, pp. 607-608 ,1982.
[6] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE inLiNbO3”, J. Appl. Phys. 70, 11, pp. 6663, 1991.
[7] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightwave Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993.
[8] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid,” Electron. Lett., vol.26, pp. 81-82, 1990.
[9] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Trans. Photon. Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991.
[10] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” J. Opt. Comm., vol. 9 pp. 19-23, 1988.
[11] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[12] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange,” J. Lightwave Technol., vol. 18, pp. 562-567, 2000.
[13] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
[14] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate” Appl. Opt. ,vol. 35, no. 36, pp. 7056-7060, Dec. 1996.
[15] W. Jin, K. S. Chiang, and Q. Liu, “Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,” OPTICS EXPRESS, vol. 16, no. 25, pp. 20409-20417, Dec. 2008.
[16] J. L. Jackel, J. J Johnson, “Reverse exchange method for burying proton exchanged waveguides,” ELECTRONICS LETTERS, vol. 27, no. 15, pp. 1360-1361, July 1991.
[17] Fredrik Laurell, Jonas Webjorn, Gunnar Arvidsson, and Johan Holmberg, “Wet etching of proton-exchanged lithium niobate-A novel processing technique,” J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, Nov. 1992.
[18] Cheng-Chih Lai, Chin-Yu Chang, Yuan-Yaw Wei, and Way-Seen Wang, ”Gamma-ray irradiation-enhanced wet-etching of proton-exchanged lithium niobate,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 20, no. 9, pp. 682-684, May 2008.
[19] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, pp. 458-460, 1974.
[20] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti: LiNbO3 channel waveguides,” Appl. Opt., 30, pp. 1085-1089, 1991.
[21] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, pp. 19-21, 1975.
[22] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, pp. 70-72, 1978.
[23] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, pp. 376-379, 1977.
[24] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, pp. 742-744, 1977.
[25] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, pp. 509-511, 1981.
[26] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys .Lett., 33, pp. 733-734, 1978.
[27] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength,” Electron. Lett., vol. 32, no. 11, pp. 1003-1005, May 1996.
[28] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996.
第五章
[1] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Opt. Laser Technol., vol. 39, pp. 1204-1213, Sep. 2007.
[2] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett., vol. 15, pp. 1094-1096, Aug. 2003.
[3] Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Optics Communications, pp. 233-243, 2005.
[4] Byeong Ha Lee, Junji Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” APPLIED OPTICS, vol. 38, no. 16, pp. 3450-3459, June 1999.
[5] Jong H. Lim, Hyun S. Jang, and Kyung S. Lee, “Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” OPTICS LETTERS, vol. 29, no. 4, pp. 346-348, Feb. 2004.
[6] Y. Liu, J.A.R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Optics Communications, pp. 27-31, June 1999.