簡易檢索 / 詳目顯示

研究生: 曾建堯
Tseng, Chien-Yao
論文名稱: 利用群體決策方法構建品質機能展開之品質屋與排序設計需求研究
Using Group Decision-Making Methods to Quality Function Deployment for Constructing House of Quality and Prioritizing Design Requirements
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 品質機能展開群體決策模糊C均值演算法
外文關鍵詞: Quality function deployment, Group decision-making, Fuzzy C-Means algorithm
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 品質機能展開(Quality function deployment, QFD)是目前企業常用於分析顧客需求與設計需求的一套系統化方法。而在品質機能展開的品質屋建構過程中有許多的數值與品質表必須被完成,包括:顧客需求的重要性、關係矩陣與相關矩陣等。然而,在以往的文獻中這些數值或表往往都假設為已知,但在實務上這些數值大多都是由一組專家,或者不同部門間所組成的工作團隊,經由一些決策流程,有效的將這些專家間或工作團隊成員間的意見整合出一共識值後所完成的,故其應屬於一群體決策(group decision-making, GDM)之問題。此外,專家常常以不同形式之明確值或模糊數等評比方式(例如:效用函數或語意變數等)表示其意見,因此考慮品質機能展開中品質屋建立之群體決策特性,本研究將分成兩個部份。第一部分中將以模糊群聚分析中常用的模糊C均值(Fuzzy C-Means, FCM)演算法為基礎,以α截集與群體決策的概念導入該演算法後,提出一個修正FCM演算法,以處理明確值或模糊數之專家意見。第二部份中,將該演算法導入QFD的品質屋建構流程中,將品質屋中專家間的意見進行分群,讓同一集群中的專家意見有比較高的相似性,接著再給予每個集群不同的權重後,將專家間的意見整合起來,成為一般文獻中所得到的專家意見共識值,以供後續研究之使用。最後,除了以上的群體決策方法,本研究也將導入關係矩陣正規化方法與模糊數排序方法,以找出設計需求重要性之排序,並進一步將以上概念與品質機能展開原始的基本流程,整合成一品質機能展開的群體決策流程。

    Quality Function Deployment (QFD) is a well known method for enterprises to analyze the relationship between customer requirements (CRs) and design requirements (DRs), and there has been much research into it. In the processes of constructing the house of quality (HOQ) of QFD, there are several values and quality matrices that must be completed by experts, including the importance of customer requirements, relationship matrix and correlation matrix. In most of the research, the values and matrices are assumed to be known by authors or they only show the result of them. In practice, a group of experts or a team will fill in the values and matrices with crisp or fuzzy numbers, such as utility or linguistic variables; therefore, the process of filling in the values and matrices should be considered as a group decision-making (GDM) problem, and there may be some similarity between different experts'opinions. In the first section of this study, we will introduce a new clustering algorithm, which we modify the well known clustering algorithm, in which we modify the well known clustering algorithm, Fuzzy C-Means (FCM), in order to cluster experts’crisp or fuzzy opinions and make those in the same cluster have higher similarity. After this, we will aggregate the clusters into a consensus for further use. Second, we will use the new method to cluster and aggregate the experts’ opinions on the CR importance, relationship matrix and correlation matrix in order to construct the HOQ of QFD. Finally, we will use the relationship normalizing method and fuzzy number ranking method to find out the ranking of the importance of DRs.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 序論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與限制 3 1.4 研究流程 4 1.5 論文架構 4 第二章 文獻探討 6 2.1 品質機能展開 6 2.2 模糊理論 13 2.3 模糊C均值 17 2.4 群體決策相關文獻 22 第三章 研究方法 25 3.1. 研究構想 25 3.2. 考慮信度之修正模糊C均值演算法模式建構 30 3.3. 具有群體決策概念之品質機能展開模式建構 51 第四章 數值案例說明 64 4.1. 範例說明 64 4.2. 顧客需求重要性 66 4.3. 關係矩陣與相關矩陣 76 4.4. 關係矩陣正規化 81 4.5. 設計需求重要性之計算與排序 83 第五章 結論與建議 85 5.1. 研究成果 85 5.2. 未來研究方向 86 參考文獻 87 附錄 91 A 顧客需求重要性專家意見 91 B 專家意見之品質屋 95

    蘇朝墩,「專訪QFD發明人-品質大師赤尾洋二」,品質月刊,第三十九卷,第十一期,17-19,2003。

    陳宛琳,「距離測度在群體決策與相似度之應用研究」,成功大學工業與資訊管理學系碩士論文,2005。

    徐惠伶,「模糊目標規劃法於多偏好資訊下群體決策問題之研究」,成功大學工業與資訊管理學系碩士論文,2007。

    Bellman, R., Kalaba, R. and Zadeh, L. A., “Abstraction and pattern classification,” Journal of Mathematical Analysis and Applications, 13, 1-7, 1966.

    Bezdek, J.C., Pattern recognition with fuzzy objective function algorithms, Plenum, New York, 1981.

    Büyüközkan, G.. and Feyzioğlu, O., “Group decision making to better respond customer needs in software development,” Computers and Industrial Engineering, 48, 427-441, 2005.

    Büyüközkan, G., Feyzioğlu, O. and Ruan, D., “Fuzzy group decision-making to multiple preference formats in quality function deployment,” Computers in Industry, 58, 5, 392-402, 2007.

    Chakraborty, C. and Chakraborty D., “A fuzzy clustering methodology for linguistic opinions in group decision making,” Applied Soft Computing, 7, 858-869, 2007.

    Chan, L. K., Wu, M. L., “Quality function deployment: A literature review,” European Journal of Operational Research, 143, 463-497, 2002.

    Chen, S. L. and Hwang, C. L., Fuzzy Multiple Attribute Decision Making, Springer, New York, 1992.

    Chen, L.-H. and Lu, H. W., “An approximate approach for ranking fuzzy numbers based on left and right dominance,” Computers and Mathematics with Applications, 41, 1589-1602, 2001.

    Chen, L.-H. and Lu, H. W., “The preference order of fuzzy number,” Computers and Mathematics with Applications, 44, 1455-1465, 2002.

    Chen, L.-H. and Weng, M. C., “A fuzzy model for exploiting quality function deployment,” Mathematical and Computer Modeling, 38, 559-570, 2003.

    Chen, L.-H. and Weng, M. C., “An evaluation approach to engineering design in QFD process using fuzzy goal programming models,” European Journal of Operational Research, 172, 230-248, 2006.

    Chiclana F., Herrera, F. and Herrera-Viedma, E., “Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations,” Fuzzy Sets Syst., 97, 33-48, 1998.

    Cohen, L.. Quality Function Deployment: How to Make QFD Work for You, Addison-Wesley, Reading, MA, 1995.

    Delgado, M., Verdegay, J. L. and Vila, M. A., “On aggregation operations of linguistic labels,” International Journal of Intelligent Systems, 8, 3, 351-370, 1993.

    Delgado, M., Herrera, F., Herrera-Viedma, E. and Martínez, L., “Combining numerical and linguistic information in group decision making,” Journal of Information Sciences, 107, 177-194, 1998.

    Dubois, D. and Prade, H., “Operations on fuzzy numbers,” International Journal of Systems Science, 9, 613-626, 1978.

    Dunn, J. C., “Well-separated clusters and the optimal fuzzy partitions,” Journal of Cybernetics, 4, 95-104, 1974.

    Fan, Z. P., Ma, J., Jiang, Y. P., Sun, Y. H. and Ma, L., “A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations,” European Journal of Operational Research, 174, 311-321, 2006.

    Franceschini, F., Advanced quality function deployment, St. Lucie Press, Boca Raton, 2002.

    Hauser, J. R. and Clausing, D., “The house of quality,” Harvard Business Review, 66, 3, 63-73, 1988.

    Herrera, F., Herrera-Viedma, E. and Martinez, L., “A fusion approach for managing multi-granularity linguistic term sets in decision making,” Fuzzy Sets and Systems, 114, 43-58, 2000.

    Herrera F., Herrera-Viedma, E. and Verdegay, J. L., “Direct approach process in group decision making using linguistic OWA operators,” Fuzzy Sets and Systems, 79, 175-190, 1996.

    Herrera, F., Martínez, L. and Sánchez, P. J., “Managing non-homogeneous information in group decision making,” European Journal of Operational Research, 166, 115-132, 2005.

    Höppner F., Klawonn, F., Kruse, R. and Runkler, T., Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition, John Wiley and Sons Ltd, New York, 1999.

    Herrera-Viedma, E., Herrera, F. and Chiclana, F., “A consensus model for multiperson decision making with different preference structures,” IEEE Transactions on Systems, Man and Cybernetics-Part A: System and Humans, 32, 3, 394-402, 2002.

    Klir, G. J. and Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Pearson Education Taiwan Ltd, Taiwan, 2005.

    Liao, T. W. , Celmins, A. K. and Hammell, R. J., “A fuzzy c-means variant for the generation of fuzzy term sets,” Fuzzy Sets and Systems, 135, 241-257, 2003.

    Pakhira, M. K., Bandyopadhyay, S. and Maulik, U., “Validity index for crisp and fuzzy clusters,” Pattern Recognition, 37, 487-501, 2004.

    Peláez, J. I.; Doña, J. M. and Gómez-Ruiz, J. A., “Analysis of OWA operators in decision making for modelling the majority concept,” Applied Mathematics and Computation, 186, 1263-1275, 2007.

    ReVelle, J. B., Moran, J. W. and Cox, C. A., The QFD Handbook, John Wiley and Sons, New York, 1998.

    Ruspini, E., “A new approach to clustering,” Information Control, 15, 22-32, 1969.

    Sato, M., Sato, Y. and Jain, L. C., Fuzzy Clustering Models and Applications, volume 9 of Studies in Fuzziness and Soft Computing, Physica-Verlag Heidelberg, Germany, 1997.

    Sullivan, L. P., “Quality function deployment,” Quality Progress, 39-50, 1986.

    Wang, W. and Zhang, Y., “On fuzzy cluster validity indices,” Fuzzy Sets and Systems, 158, 2095-2117, 2007.

    Wasserman, G. S., “On how to prioritize design requirements during the QFD planning process,” IIE Transactions, 25, 3, 59-65, 1993.

    Xie, M., Tan, K. C. and Goh, T. N., Advanced QFD applications, ASQ Quality Press, Milwaukee, 2003.

    Yager, R. R., “On ordered weighted averaging aggregation operators in multicriteria decision making,” IEEE Transactions on Systems, Man, and Cybernetics, 18, 183-190, 1988.

    Yang, M. S. and Ko, C. H., “On a class of fuzzy c-numbers clustering procedures for fuzzy data,” Fuzzy Sets and Systems, 84, 49-60, 1996.

    Zadeh, L. A., “Fuzzy Sets,” Information and Control, 8, 338-353, 1965.

    Zimmermann, H. J., Fuzzy set theory and its applications, 3rd Edition, Kluwer Academic Publishers, Boston, 1996.

    下載圖示 校內:2011-06-20公開
    校外:2012-06-20公開
    QR CODE