簡易檢索 / 詳目顯示

研究生: 簡漢翔
Chien, Han-Hsiang
論文名稱: 長期複製壓力下,PCM-1調節DNA損傷反應來維持細胞存活
Pericentriolar material 1 (PCM-1) regulates DNA damage response signaling for cell survival upon prolonged replication stress
指導教授: 王家義
Wang, Chia-Yih
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 49
中文關鍵詞: PCM-1DNA損傷反應長期複製壓力細胞自噬細胞存活
外文關鍵詞: PCM-1, DNA damage response, prolonged replication stress, autophagy, cell survival
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中心體是由兩互相垂直的中心粒以及圍繞在周圍的中心粒周圍物質(PCM)所組成。中心體在細胞分裂中扮演著很重要的角色。然而不正常的中心體數目異常可能增加基因組不穩定性而促進腫瘤的生成。中心粒衛星蛋白 (centriolar satellite)包含許多中心體蛋白並且圍繞在中心體附近。中心粒衛星蛋白主要是由PCM-1所構成的,PCM-1在中心粒衛星蛋白中的功能是作為支架蛋白來組裝其他的中心粒衛星蛋白。從先前的研究發現在長期的複製壓力下會透過中心粒衛星蛋白remodeling而導致中心體數目異常。因此,人們覺得在長期複製壓力下,PCM-1可能在導致中心體數目異常中扮演著角色。在本篇研究中,我們利用hydroxyurea (HU)來研究PCM-1在長期複製壓力下的作用為何。我們發現在長期複製壓力下會誘導細胞中心體數目異常以及PCM-1 remodeling。為了進一步確認是否PCM-1參與在長期複製壓力下所誘導的中心體數目異常,我們利用了藥理以及遺傳學的方法來抑制PCM-1 remodeling。我們的結果顯示破壞 PCM-1 remodeling對於中心體數目異常沒有影響。然而,抑制中心體數目異常降低PCM-1 remodeling,這也說明中心體數目異常可能有助於PCM-1 remodeling。接著,我們探討PCM-1在長期複製壓力之下對於DNA損傷反應有何影響。在HU的處理下活化PI3K-like kinases (ATM、ATR 和 DNA-PK)。有趣的是,在長期複製壓力下,PCM-1的缺失會降低這些激酶的活化。此外,在長期複製壓力下會誘導細胞自噬產生並且PCM-1的缺失會抑制因HU所誘導的細胞自噬。另外,在HU的處理下,PCM-1的缺失會誘導細胞死亡。總結而言,在本篇實驗中我們認為在長期複製壓力下,PCM-1調控DNA損傷反應來維持細胞存活。

    The centrosome consists of two orthogonally arranged centrioles and surrounded by electron-dense pericentriolar material (PCM). Centrosome plays an important role in cell division. Consequently, abnormal centrosome amplification which may facilitate tumorigenesis by increasing genomic instability. Centriolar satellites contain numerous proteins that are located around the centrosome. The major component of centriolar satellite protein is called PCM-1, which functions as a scaffold protein in the centriolar satellites for the assembly of other centriolar satellites proteins. Previous studies show that prolonged replication stress causes centrosome amplification via centriolar satellites remodeling. Thus, people suggest PCM-1 might play a role in centrosome amplification under prolonged replication stress. Here, we investigated the role of PCM-1 in centrosome amplification under prolonged replication stress by using hydroxyurea (HU) treatment. Prolonged replication stress-induced centrosome amplification and PCM-1 remodeling. To confirm whether PCM-1 participates in prolonged replication stress-induced centrosome amplification, we used pharmacological and genetic approaches to inhibit PCM-1 remodeling. Our results showed that disruption of PCM-1 remodeling had no effect on the centrosome amplification. However, inhibition of centrosome amplification reduced PCM-1 remodeling suggesting that centrosome amplification might contribute to PCM-1 remodeling. Then, we investigated the role of PCM-1 in DNA damage response under prolonged replication stress. PI3K-like kinase, ATM, ATR, and DNA-PK, were activated by HU treatment. Interestingly, depletion of PCM-1 decreased the activation of these kinases upon prolonged replication stress. Besides, autophagy was activated by prolonged replication stress, and depletion of PCM-1 inhibited HU-induced autophagy. Furthermore, depletion of PCM-1 induced cell death upon HU treatment. In conclusion, this study suggests that PCM-1 regulates DNA damage response signaling to maintain cell survival during prolonged replication stress.

    論文考試合格證明 I 中文摘要 II ABSTRACT III ACKNOWLEDGEMENT V INTRODUCTION 1 1. Centrosome 1 2. Centriolar satellite and PCM-1 2 3. Hydroxyurea (HU) 2 4. DNA replication stress 3 5. The DNA damage response 3 6. Autophagy 5 MATERIAL AND METHODS 7 RESULTS 11 A. Hydroxyurea induces centrosome amplification and PCM-1 remodeling upon prolonged replication stress. 11 B. Suppresses dynein/dynactin by vanadate inhibit centrosome amplification but not sip150 upon prolonged replication stress. 11 C. Prolonged replication stress-induced PCM-1 remodeling occurs via centrosome amplification upon prolonged replication stress. 13 D. PCM-1 participates in DNA damage response signaling pathways upon prolonged replication stress. 14 E. Depletion of PCM-1 affects autophagy upon prolonged replication stress. 15 F. PCM-1 participates in maintain cell survival under prolonged replication stress. 16 DISCUSSION 17 REFERENCE 22 FIGURES 26 Figure 1. Hydroxyurea (HU) induces centrosome amplification and PCM-1 remodeling in human Osteosarcoma U2OS cells. 27 Figure 2. Repress dynein function reduces centrosome amplification and PCM-1 remodeling upon prolonged replication stress. 28 Figure 3. Inhibition of dynein affects centriolar satellites distribution and has no effect on centrosome amplification upon prolonged replication stress. 29 Figure 4. The expression level of p150 in p150 depletion cells. 30 Figure 5. Interference with dynactin function suppresses PCM-1 remodeling but has no effect on centrosome amplification upon prolonged replication stress. 31 Figure 6. Disrupting the dynactin function affects centriolar satellites distribution but has no effect on centrosome amplification. 32 Figure 7. Nocodazole suppresses PCM-1 remodeling but has no effect on centrosome amplification upon replication stress. 33 Figure 8. Nocodazole suppresses PCM-1 remodeling but has no effect on centrosome amplification upon replication stress. 34 Figure 9. PCM-1 remodeling does not regulate centrosome amplification. 36 Figure 10. Centrosome amplification regulates PCM-1 remodeling. 37 Figure 11. Roscovitine suppresses centriolar satellites remodeling via centrosome amplification. 38 Figure 12. Centrosome amplification regulates PCM-1 remodeling upon prolonged replication stress. 39 Figure 13. Absence of PCM-1 alleviates DNA damage response and checkpoint kinases upon prolonged replication stress. 40 Figure 14. Depletion of PCM-1 decreases activation of Chk1 upon prolonged replication stress. 41 Figure 15. Depletion of PCM-1 decreases activation of Chk2 upon prolonged replication stress. 42 Figure 16. PCM-1 participates in autophagy upon prolonged replication stress. 44 Figure 17. PCM-1 participates in cell survival during prolonged replication stress. 45 Figure 18. The summary models 47 Table1. Antibody 48 Table 2. Drug 49

    1. Werner, S., A. Pimenta-Marques, and M. Bettencourt-Dias, Maintaining centrosomes and cilia. J Cell Sci, 2017. 130(22): p. 3789-3800.
    2. Wu, J. and A. Akhmanova, Microtubule-Organizing Centers. Annu Rev Cell Dev Biol, 2017. 33: p. 51-75.
    3. Nigg, E.A., Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, 2002. 2(11): p. 815-25.
    4. Godinho, S.A. and D. Pellman, Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1650).
    5. Bennett, R.A., H. Izumi, and K. Fukasawa, Induction of centrosome amplification and chromosome instability in p53-null cells by transient exposure to subtoxic levels of S-phase-targeting anticancer drugs. Oncogene, 2004. 23(40): p. 6823-9.
    6. Hori, A. and T. Toda, Regulation of centriolar satellite integrity and its physiology. Cell Mol Life Sci, 2017. 74(2): p. 213-229.
    7. Kim, J., S.R. Krishnaswami, and J.G. Gleeson, CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet, 2008. 17(23): p. 3796-805.
    8. Dammermann, A. and A. Merdes, Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol, 2002. 159(2): p. 255-66.
    9. Tang, Z., et al., Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature, 2013. 502(7470): p. 254-7.
    10. McGann, P.T. and R.E. Ware, Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf, 2015. 14(11): p. 1749-58.
    11. Singh, A. and Y.J. Xu, The Cell Killing Mechanisms of Hydroxyurea. Genes (Basel), 2016. 7(11).
    12. Nordlund, P. and P. Reichard, Ribonucleotide reductases. Annu Rev Biochem, 2006. 75: p. 681-706.
    13. Skog, S., et al., Hydroxyurea-induced cell death as related to cell cycle in mouse and human T-lymphoma cells. Cancer Res, 1987. 47(24 Pt 1): p. 6490-3.
    14. Timson, J., Hydroxyurea: comparison of cytotoxic and antimitotic activities against human lymphocytes in vitro. Br J Cancer, 1969. 23(2): p. 337-9.
    15. Kitao, H., et al., DNA replication stress and cancer chemotherapy. Cancer Sci, 2018. 109(2): p. 264-271.
    16. Delia, D. and S. Mizutani, The DNA damage response pathway in normal hematopoiesis and malignancies. Int J Hematol, 2017. 106(3): p. 328-334.
    17. Bi, X., Mechanism of DNA damage tolerance. World J Biol Chem, 2015. 6(3): p. 48-56.
    18. Manic, G., et al., Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol, 2015. 2(4): p. e1012976.
    19. Chen, Y. and Y. Sanchez, Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst), 2004. 3(8-9): p. 1025-32.
    20. Bakkenist, C.J. and M.B. Kastan, DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003. 421(6922): p. 499-506.
    21. Zannini, L., D. Delia, and G. Buscemi, CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol, 2014. 6(6): p. 442-57.
    22. Hosoya, N. and K. Miyagawa, Targeting DNA damage response in cancer therapy. Cancer Sci, 2014. 105(4): p. 370-88.
    23. Desantis, V., et al., Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl Oncol, 2018. 11(6): p. 1350-1357.
    24. Ravanan, P., I.F. Srikumar, and P. Talwar, Autophagy: The spotlight for cellular stress responses. Life Sci, 2017. 188: p. 53-67.
    25. Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 2014. 20(3): p. 460-73.
    26. Tollenaere, M.A., et al., p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nat Commun, 2015. 6: p. 10075.
    27. Wang, C.Y., et al., DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene, 2015. 34(10): p. 1263-9.
    28. Tollenaere, M.A., N. Mailand, and S. Bekker-Jensen, Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci, 2015. 72(1): p. 11-23.
    29. Loffler, H., et al., DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene, 2013. 32(24): p. 2963-72.
    30. Kobayashi, T., et al., Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun, 1978. 81(4): p. 1313-8.
    31. Chen, T.-Y., et al., Cell Cycle-Dependent Localization of Dynactin Subunit p150glued at Centrosome. Journal of Cellular Biochemistry, 2015. 116(9): p. 2049-2060.
    32. Waterman-Storer, C.M., S. Karki, and E.L. Holzbaur, The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci U S A, 1995. 92(5): p. 1634-8.
    33. Nakamura, N., et al., Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol, 1995. 131(6 Pt 2): p. 1715-26.
    34. Yadav, S. and A.D. Linstedt, Golgi positioning. Cold Spring Harb Perspect Biol, 2011. 3(5).
    35. Jordan, M.A., D. Thrower, and L. Wilson, Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci, 1992. 102 ( Pt 3): p. 401-16.
    36. Matsumoto, Y., K. Hayashi, and E. Nishida, Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol, 1999. 9(8): p. 429-32.
    37. Niida, H. and M. Nakanishi, DNA damage checkpoints in mammals. Mutagenesis, 2006. 21(1): p. 3-9.
    38. Staples, C.J., et al., The centriolar satellite protein Cep131 is important for genome stability. J Cell Sci, 2012. 125(Pt 20): p. 4770-9.
    39. Boesen-de Cock, J.G., et al., The anti-cancer drug etoposide can induce caspase-8 processing and apoptosis in the absence of CD95 receptor-ligand interaction. Apoptosis, 1998. 3(1): p. 17-25.
    40. Chen, J., et al., Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Res, 2008. 36(11): p. 3781-90.
    41. Hori, A., et al., Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell, 2015. 26(11): p. 2005-19.
    42. Kim, J.C., et al., The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet, 2004. 36(5): p. 462-70.
    43. Oshimori, N., et al., Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J, 2009. 28(14): p. 2066-76.
    44. Stowe, T.R., et al., The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. Mol Biol Cell, 2012. 23(17): p. 3322-35.
    45. Kim, K., K. Lee, and K. Rhee, CEP90 is required for the assembly and centrosomal accumulation of centriolar satellites, which is essential for primary cilia formation. PLoS One, 2012. 7(10): p. e48196.
    46. Kodani, A., et al., Par6 alpha interacts with the dynactin subunit p150 Glued and is a critical regulator of centrosomal protein recruitment. Mol Biol Cell, 2010. 21(19): p. 3376-85.
    47. Gheiratmand, L., et al., Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J, 2019.
    48. Lopes, C.A., et al., Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J Cell Sci, 2011. 124(Pt 4): p. 600-12.
    49. Odabasi, E., et al., Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep, 2019. 20(6).
    50. Gupta, G.D., et al., A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell, 2015. 163(6): p. 1484-99.
    51. Tsang, W.Y., et al., CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell, 2008. 15(2): p. 187-97.
    52. Silva, E., et al., Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol Biol Cell, 2016. 27(1): p. 48-63.
    53. Staples, C.J., et al., Ccdc13 is a novel human centriolar satellite protein required for ciliogenesis and genome stability. J Cell Sci, 2014. 127(Pt 13): p. 2910-9.
    54. Lee, J.Y. and T. Stearns, FOP is a centriolar satellite protein involved in ciliogenesis. PLoS One, 2013. 8(3): p. e58589.
    55. Villumsen, B.H., et al., A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO J, 2013. 32(23): p. 3029-40.
    56. Yonekawa, T. and A. Thorburn, Autophagy and cell death. Essays Biochem, 2013. 55: p. 105-17.
    57. Kroemer, G. and B. Levine, Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol, 2008. 9(12): p. 1004-10.
    58. He, B., N. Lu, and Z. Zhou, Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol, 2009. 21(6): p. 900-12.
    59. Fink, S.L. and B.T. Cookson, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 2005. 73(4): p. 1907-16.

    無法下載圖示 校內:2024-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE