簡易檢索 / 詳目顯示

研究生: 張智怡
Chang, Chih-Yi
論文名稱: 小分子核糖核酸196a對神經細胞的型態所造成的影響
Effects of miR-196a on Morphological Functions of Neuronal Cells
指導教授: 楊尚訓
Yang, Shang-Hsun
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 小分子核醣核酸196a神經突生長基因轉殖小鼠
外文關鍵詞: miR-196a, neurite outgrowth, transgenic mice
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小分子核醣核酸由小片段且不會轉譯成蛋白質的核醣核酸所組成,其可以藉由抑制訊息核醣核酸的轉譯作用或是促進訊息核醣核酸降解,達到調控基因表現的目的,並且其參與廣泛的生命過程,像是細胞發育、增殖、凋亡和代謝。近期的研究已釐清神經中的小分子核醣核酸在神經細胞發育和成熟的不同階段,包括神經突生長,樹突生成以及突觸形成中所扮演的角色。在許多神經退化性疾病,如阿茲海默症和帕金森氏症,皆有發現小分子核醣核酸的表現量有異常的情形。我們實驗室先前發表的文獻中發現,特定的小分子核醣核酸196a,在細胞、基因轉殖小鼠以及從患者身上取得的誘導性多功能幹細胞等亨丁頓舞蹈症模型中,皆發現此疾病有被改善的情形,暗示小分子核醣核酸196a可能在神經保護作用中扮演重要的角色。因為神經保護作用可能是透過抗氧化,抗發炎,抗細胞凋亡,細胞增生或促進神經突生長等作用,因此我們推測小分子核醣核酸196a可能會透過這些機制的其中一種,使其具有神經保護作用。在本篇論文中,我們將重點放在小分子核醣核酸196a對神經突生長的影響。在體外實驗的結果發現,小分子核醣核酸196a大量表現之後,在小鼠神經瘤母細胞中可以觀察到神經突生長促進的效果。除此之外,我們發現,與神經突生長相關的重要基因,磷酸化神經生長相關蛋白43和磷酸化細胞外訊號調節激酶1及2,在小鼠神經瘤母細胞大量表現小分子核醣核酸196a後,其蛋白質的表現量有顯著的增加。接著,在體內實驗的結果中,小分子核醣核酸196a基因轉殖小鼠的大腦皮層也顯示這兩種蛋白質的表現量比起野生型小鼠有顯著增加的情形。我們更進一步的發現,與突觸可塑性相關的蛋白質,囊泡相關膜蛋白1,其表現量在小分子核醣核酸196a基因轉殖小鼠中也有顯著性增加,並且這些基因轉殖小鼠的學習記憶能力呈現較好的趨勢。我們發現小分子核醣核
    酸196a其中一個預測的目標基因,Ran結合蛋白10,為了探討其是否為小分子核醣核酸196a的目標基因,我們在體外以及體內的實驗中,大量表現小分子核醣核酸196a後發現Ran結合蛋白10的蛋白質表現量顯著下降。綜合我們的研究結果,發現小分子核醣核酸196a在神經生長上新的功能,此發現也許能提供亨丁頓舞蹈症潛在的治療策略。

    SUMMARY
    MicroRNAs (miRNAs) regulate gene expression by inhibiting translation or promoting mRNA degradation, and involve in a wide range of biological processes. Recent studies have clarified roles of neural miRNAs at different stages of neuronal development and maturation. One previous paper published from our laboratory indicated that a specific miRNA, miR-196a, ameliorates phenotypes of Huntington’s disease in cells, transgenic mice and patient-derived induced pluripotent stem cell models, indicating that miR-196a may play an important role in neuroprotection. We hypothesize miR-196a might have neuroprotective effects through one of these mechanisms. Here, we focused on the effects of miR-196a for neurite outgrowth. In the in vitro results, as miR-196a was overexpressed, promotion of neurite outgrowth was observed in neuroblastoma cells. Additionally, we found that the critical genes, phosphorylated GAP43 and phosphorylated ERK, related to morphology were significantly increased in neuroblastoma cells when miR-196a was overexpressed. Then, in the in vivo results, the brains of miR-196a transgenic mice also displayed higher expression of these two proteins compared to those of wild type mice. Furthermore, the expression of vesicle-associated membrane protein 1 (VAMP1) related to synaptic plasticity showed significantly increased in miR-196a transgenic mice, and these mice further have shown better trend of learning and memory ability. To investigate the target genes of miR-196a, we found that one target, RAN Binding Protein 10 (RANBP10), was decreased while miR-196a was overexpressed in vitro and in vivo. Our results identified a novel function of miR-196a in neurogenesis, and may provide a potential therapeutic strategy for neurodegenerative disease.
    Key words:miR-196a、neurite outgrowth、transgenic mice

    摘要 I Effects of miR-196a on Morphological Functions of Neuronal Cells III 誌謝 VI 圖錄 XI 壹、文獻探討 1 一、小分子核醣核酸 (microRNA) 1 (一)歷史 1 (二)生合成路徑 2 (三)小分子核醣核酸的功能 4 (四)腦部的小分子核醣核酸 5 (五)小分子核醣核酸196a (miR196a) 8 (六)小分子核醣核酸196a在神經方面的研究 11 二、 神經突生長(Neurite outgrowth) 13 (一)定義和生理意義 13 (二)神經突生長過程 13 (三)調控因子 14 (四)小分子核醣核酸對於神經突生長的相關研究 16 (五)神經突生長(Neurite outgrowth)在活體的功能(包含認知行為能力) 18 (六)在神經細胞小分子核醣核酸成熟缺陷和神經系統疾病 19 貳、研究動機與目標 21 一、研究動機 21 二、研究目標 22 参、材料與方法 23 一、細胞培養 23 (一)細胞株 23 (二)細胞繼代 23 (三)冷凍細胞 23 (四)解凍細胞 24 二、細胞轉染 24 (一)質體 24 (二)質體轉型 24 (三)質體抽取 25 (四)轉染細胞 25 (五)分化細胞 26 三、蛋白質表現量分析 26 (一)細胞及組織收集 26 (二)萃取胞內蛋白 26 (三)蛋白質定量 27 (四)西方墨點法 27 四、實驗動物飼養 29 (一)基因轉殖小鼠隻鑑定 30 五、動物行為實驗 31 (一)T型迷宮(T maze) 31 (二)開放領域測試(Open filed text) 32 六、免疫螢光染色 32 (一)樣品的準備 32 (二)處理免疫組織染色填補緩衝液(IHC blocking buffer) 33 (三)使用metamorph(美嘉儀器) 33 七、核醣核酸抽取 33 (一)均質化 33 (二)相的分層(phase separation): 34 (三)核醣核酸沉澱(RNA precipitation): 34 (四)核醣核酸清洗(RNA wash): 34 (五)溶解核醣核酸(Redissolving RNA ): 34 (六)測核醣核酸濃度(UV Spectrophotometer, Merinton) 34 八、核醣核酸反轉錄成互補去氧核醣核酸(complementary DNA) 35 (一)將核醣核酸的濃度稀釋成100ng/μl 35 (二)試劑配製: 35 (三)將核醣核酸(RNA)反轉錄成互補去氧核醣核酸: 35 (四)即時聚合酶鏈鎖反應 (Real-time polymerase chain reaction,簡稱Real-time PCR) 35 九、統計分析 36 肆、結果 37 目標(一):探討小分子核醣核酸-196a對神經細胞生長的影響 37 一、小分子核醣核酸-196a對小鼠神經瘤母細胞形態變化的影響。 37 二、小分子核糖核酸-196a對小鼠神經瘤母細胞形態變化相關基因的影響。 37 目標(二):利用基因轉殖小鼠探討小分子核醣核酸-196a對神經突生長的影響 39 一、探討小分子核醣核酸-196a基因轉殖小鼠大腦皮層型態相關基因的變化。 39 二、探討小分子核醣核酸-196a基因轉殖小鼠大腦皮層突觸可塑性相關基因的變化 40 三、研究小分子核醣核酸-196a基因轉殖小鼠其學習與記憶方面的能力 41 目標(三):研究小分子核醣核酸196a對神經突生長可能的影響途徑 42 一、研究小分子核醣核酸-196a對Ran結合蛋白10的3端非編碼區(RanBP10 3’UTR)標的的影響 42 二、研究小分子核醣核酸-196在細胞中對Ran結合蛋白10功能的影響 43 三、研究小分子核醣核酸-196在基因轉殖小鼠中對Ran結合蛋白10蛋白質表現的影響 43 四、研究Ran結合蛋白10蛋白質表現對神經突生長的影響 43 伍、討論 45 一、本篇論文重要發現 45 二、細胞大量表現小分子核醣核酸196a後神經突生長情形 45 三、分析小分子核醣核酸196a基因轉殖小鼠神經突生長情形 47 四、神經突生長與學習記憶能力之關連 47 五、探討小分子核醣核酸196a之預測目標基因Ran結合蛋白10 48 六、未來工作 48 陸、結論 50 柒、參考文獻 51 圖表 1、細胞模式所使用的基因片段與其表現量 58 圖表 2、小分子核醣核酸196a(miR196a)對細胞形態的影響 59 圖表 3、小分子核醣核酸196a對神經突生長相關的重要基因,磷酸化細胞外訊號調節激酶1及2 (P-ERK1/2)的影響 60 圖表 4、小分子核醣核酸196a對神經突生長相關的重要基因,磷酸化神經生長相關蛋白43 (P-GAP43)的影響 61 圖表 5、小分子核醣核酸196a對神經突生長相關的重要基因,細胞分裂週期42 (CDC42)的影響 62 圖表 6、小分子核醣核酸196a小鼠對神經突生長相關的重要基因,磷酸化細胞外訊號調節激酶1及2(P-ERK1/2)以及磷酸化神經生長相關蛋白43 (P-GAP43)的影響 63 圖表 7、小分子核醣核酸196a小鼠對神經突生長相關的重要基因,細胞分裂週期42 (CDC42)的影響 64 圖表 8、小分子核醣核酸196a小鼠對神經可塑性相關的基因的影響 65 圖表 9、小分子核醣核酸196a小鼠對神經可塑性相關的基因的影響 66 圖表 10、小分子核醣核酸-196基因轉殖小鼠學習與記憶的能力 67 圖表 11、小分子核醣核酸-196基因轉殖小鼠在新物體辨識中,學習與記憶的能力 68 圖表 12、小分子核醣核酸-196a的預測目標基因,Ran結合蛋白10(RAN Binding Protein 10) 69 圖表 13、小分子核醣核酸-196a對Ran結合蛋白10 (RAN Binding Protein10)的影響 70 圖表 14、小分子核醣核酸196a小鼠對Ran結合蛋白10的影響 71 圖表 15、小分子核醣核酸-196a,對β微管蛋白(β-tubulin) 的型態所造成的影響 72

    Abe, M., A. Naqvi, G. J. Hendriks, V. Feltzin, Y. Zhu, A. Grigoriev and N. M. Bonini (2014). "Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila." Genes Dev 28(1): 44-57.
    Ambros, V. (2008). "The evolution of our thinking about microRNAs." Nat Med 14(10): 1036-1040.
    Belmonte, M. K., G. Allen, A. Beckel-Mitchener, L. M. Boulanger, R. A. Carper and S. J. Webb (2004). "Autism and abnormal development of brain connectivity." J Neurosci 24(42): 9228-9231.
    Benowitz, L. I. and A. Routtenberg (1997). "GAP-43: an intrinsic determinant of neuronal development and plasticity." Trends Neurosci 20(2): 84-91.
    Berezikov, E., F. Thuemmler, L. W. van Laake, I. Kondova, R. Bontrop, E. Cuppen and R. H. Plasterk (2006). "Diversity of microRNAs in human and chimpanzee brain." Nat Genet 38(12): 1375-1377.
    Bernstein, E., S. Y. Kim, M. A. Carmell, E. P. Murchison, H. Alcorn, M. Z. Li, A. A. Mills, S. J. Elledge, K. V. Anderson and G. J. Hannon (2003). "Dicer is essential for mouse development." Nat Genet 35(3): 215-217.
    Bruno, I. G., R. Karam, L. Huang, A. Bhardwaj, C. H. Lou, E. Y. Shum, H. W. Song, M. A. Corbett, W. D. Gifford, J. Gecz, S. L. Pfaff and M. F. Wilkinson (2011). "Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay." Mol Cell 42(4): 500-510.
    Chen, C., A. Wirth and E. Ponimaskin (2012). "Cdc42: an important regulator of neuronal morphology." Int J Biochem Cell Biol 44(3): 447-451.
    Chendrimada, T. P., R. I. Gregory, E. Kumaraswamy, J. Norman, N. Cooch, K. Nishikura and R. Shiekhattar (2005). "TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing." Nature 436(7051): 740-744.
    Cheng, P. H., C. L. Li, Y. F. Chang, S. J. Tsai, Y. Y. Lai, A. W. Chan, C. M. Chen and S. H. Yang (2013). "miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models." Am J Hum Genet 93(2): 306-312.
    Colamarino, S. A. and M. Tessier-Lavigne (1995). "The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons." Cell 81(4): 621-629.
    Costa-Mattioli, M., W. S. Sossin, E. Klann and N. Sonenberg (2009). "Translational control of long-lasting synaptic plasticity and memory." Neuron 61(1): 10-26.
    Davis, T. H., T. L. Cuellar, S. M. Koch, A. J. Barker, B. D. Harfe, M. T. McManus and E. M. Ullian (2008). "Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus." J Neurosci 28(17): 4322-4330.
    De Martino, I., R. Visone, M. Fedele, F. Petrocca, D. Palmieri, J. Martinez Hoyos, F. Forzati, C. M. Croce and A. Fusco (2009). "Regulation of microRNA expression by HMGA1 proteins." Oncogene 28(11): 1432-1442.
    Deacon, R. M. and J. N. Rawlins (2006). "T-maze alternation in the rodent." Nat Protoc 1(1): 7-12.
    Drescher, U., C. Kremoser, C. Handwerker, J. Loschinger, M. Noda and F. Bonhoeffer (1995). "In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases." Cell 82(3): 359-370.
    Edelman, G. M. (1986). "Cell adhesion molecules in neural histogenesis." Annu Rev Physiol 48: 417-430.
    Ehrlich, I., M. Klein, S. Rumpel and R. Malinow (2007). "PSD-95 is required for activity-driven synapse stabilization." Proc Natl Acad Sci U S A 104(10): 4176-4181.
    Elferink, L. A., W. S. Trimble and R. H. Scheller (1989). "Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system." J Biol Chem 264(19): 11061-11064.
    Emmrich, S., M. Rasche, J. Schoning, C. Reimer, S. Keihani, A. Maroz, Y. Xie, Z. Li, A. Schambach, D. Reinhardt and J. H. Klusmann (2014). "miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFbeta and Wnt signaling." Genes Dev 28(8): 858-874.
    Etienne-Manneville, S. and A. Hall (2003). "Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity." Nature 421(6924): 753-756.
    Eulalio, A., E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser and E. Izaurralde (2009). "Deadenylation is a widespread effect of miRNA regulation." RNA 15(1): 21-32.
    Gaur, A., D. A. Jewell, Y. Liang, D. Ridzon, J. H. Moore, C. Chen, V. R. Ambros and M. A. Israel (2007). "Characterization of microRNA expression levels and their biological correlates in human cancer cell lines." Cancer Res 67(6): 2456-2468.
    Giraldez, A. J., R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel and A. F. Schier (2005). "MicroRNAs regulate brain morphogenesis in zebrafish." Science 308(5723): 833-838.
    Govek, E. E., S. E. Newey and L. Van Aelst (2005). "The role of the Rho GTPases in neuronal development." Genes Dev 19(1): 1-49.
    Greer, J. M. and M. R. Capecchi (2002). "Hoxb8 is required for normal grooming behavior in mice." Neuron 33(1): 23-34.
    Guan, Y., M. Mizoguchi, K. Yoshimoto, N. Hata, T. Shono, S. O. Suzuki, Y. Araki, D. Kuga, A. Nakamizo, T. Amano, X. Ma, K. Hayashi and T. Sasaki (2010). "MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance." Clin Cancer Res 16(16): 4289-4297.
    He, X., Q. Zhang, Y. Liu and X. Pan (2007). "Cloning and identification of novel microRNAs from rat hippocampus." Acta Biochim Biophys Sin (Shanghai) 39(9): 708-714.
    Holtmaat, A. J., A. B. Oestreicher, W. H. Gispen and J. Verhaagen (1998). "Manipulation of gene expression in the mammalian nervous system: application in the study of neurite outgrowth and neuroregeneration-related proteins." Brain Res Brain Res Rev 26(1): 43-71.
    Huang, Y. C., L. Smith, J. Poulton and W. M. Deng (2013). "The microRNA miR-7 regulates Tramtrack69 in a developmental switch in Drosophila follicle cells." Development 140(4): 897-905.
    Hunsberger, J. G., D. R. Austin, G. Chen and H. K. Manji (2009). "MicroRNAs in mental health: from biological underpinnings to potential therapies." Neuromolecular Med 11(3): 173-182.
    Isenmann, S., Y. Khew-Goodall, J. Gamble, M. Vadas and B. W. Wattenberg (1998). "A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal." Mol Biol Cell 9(7): 1649-1660.
    Kapsimali, M., W. P. Kloosterman, E. de Bruijn, F. Rosa, R. H. Plasterk and S. W. Wilson (2007). "MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system." Genome Biol 8(8): R173.
    Kocerha, J., M. A. Faghihi, M. A. Lopez-Toledano, J. Huang, A. J. Ramsey, M. G. Caron, N. Sales, D. Willoughby, J. Elmen, H. F. Hansen, H. Orum, S. Kauppinen, P. J. Kenny and C. Wahlestedt (2009). "MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction." Proc Natl Acad Sci U S A 106(9): 3507-3512.
    Konopka, W., A. Kiryk, M. Novak, M. Herwerth, J. R. Parkitna, M. Wawrzyniak, A. Kowarsch, P. Michaluk, J. Dzwonek, T. Arnsperger, G. Wilczynski, M. Merkenschlager, F. J. Theis, G. Kohr, L. Kaczmarek and G. Schutz (2010). "MicroRNA loss enhances learning and memory in mice." J Neurosci 30(44): 14835-14842.
    Korsching, S. (1993). "The neurotrophic factor concept: a reexamination." J Neurosci 13(7): 2739-2748.
    Krichevsky, A. M., K. S. King, C. P. Donahue, K. Khrapko and K. S. Kosik (2003). "A microRNA array reveals extensive regulation of microRNAs during brain development." RNA 9(10): 1274-1281.
    Lagos-Quintana, M., R. Rauhut, W. Lendeckel and T. Tuschl (2001). "Identification of novel genes coding for small expressed RNAs." Science 294(5543): 853-858.
    Lagos-Quintana, M., R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel and T. Tuschl (2002). "Identification of tissue-specific microRNAs from mouse." Curr Biol 12(9): 735-739.
    Lai, H. C., M. J. Wu, P. Y. Chen, T. T. Sheu, S. P. Chiu, M. H. Lin, C. T. Ho and J. H. Yen (2011). "Neurotrophic effect of citrus 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone: promotion of neurite outgrowth via cAMP/PKA/CREB pathway in PC12 cells." PLoS One 6(11): e28280.
    Landgraf, P., M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A. O. Kamphorst, M. Landthaler, C. Lin, N. D. Socci, L. Hermida, V. Fulci, S. Chiaretti, R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R. U. Muller, B. Schermer, U. Bissels, J. Inman, Q. Phan, M. Chien, D. B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H. I. Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. Wernet, G. Macino, C. E. Rogler, J. W. Nagle, J. Ju, F. N. Papavasiliou, T. Benzing, P. Lichter, W. Tam, M. J. Brownstein, A. Bosio, A. Borkhardt, J. J. Russo, C. Sander, M. Zavolan and T. Tuschl (2007). "A mammalian microRNA expression atlas based on small RNA library sequencing." Cell 129(7): 1401-1414.
    Lee, R. C., R. L. Feinbaum and V. Ambros (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell 75(5): 843-854.
    Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim and V. N. Kim (2003). "The nuclear RNase III Drosha initiates microRNA processing." Nature 425(6956): 415-419.
    Lee, Y., M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek and V. N. Kim (2004). "MicroRNA genes are transcribed by RNA polymerase II." EMBO J 23(20): 4051-4060.
    Lewis, B. P., C. B. Burge and D. P. Bartel (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets." Cell 120(1): 15-20.
    Lin, W. F., C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu and L. Chen (2009). "SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway." Cell Signal 21(7): 1060-1072.
    Liu, Y. X., M. Wang and X. J. Wang (2014). "Endogenous Small RNA Clusters in Plants." Genomics Proteomics Bioinformatics 12(2): 64-71.
    Lugli, G., V. I. Torvik, J. Larson and N. R. Smalheiser (2008). "Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain." J Neurochem 106(2): 650-661.
    Lund, E., S. Guttinger, A. Calado, J. E. Dahlberg and U. Kutay (2004). "Nuclear export of microRNA precursors." Science 303(5654): 95-98.
    Luo, Y., D. Raible and J. A. Raper (1993). "Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones." Cell 75(2): 217-227.
    Makeyev, E. V., J. Zhang, M. A. Carrasco and T. Maniatis (2007). "The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing." Mol Cell 27(3): 435-448.
    Manakov, S. A., S. G. Grant and A. J. Enright (2009). "Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation." BMC Genomics 10: 419.
    Mansfield, J. H., B. D. Harfe, R. Nissen, J. Obenauer, J. Srineel, A. Chaudhuri, R. Farzan-Kashani, M. Zuker, A. E. Pasquinelli, G. Ruvkun, P. A. Sharp, C. J. Tabin and M. T. McManus (2004). "MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression." Nat Genet 36(10): 1079-1083.
    Meyer, I., S. Kunert, S. Schwiebert, I. Hagedorn, J. E. Italiano, Jr., S. Dutting, B. Nieswandt, S. Bachmann and H. Schulze (2012). "Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10." Blood 120(17): 3594-3602.
    Miska, E. A., E. Alvarez-Saavedra, M. Townsend, A. Yoshii, N. Sestan, P. Rakic, M. Constantine-Paton and H. R. Horvitz (2004). "Microarray analysis of microRNA expression in the developing mammalian brain." Genome Biol 5(9): R68.
    Miyazaki, Y., H. Adachi, M. Katsuno, M. Minamiyama, Y. M. Jiang, Z. Huang, H. Doi, S. Matsumoto, N. Kondo, M. Iida, G. Tohnai, F. Tanaka, S. Muramatsu and G. Sobue (2012). "Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2." Nat Med 18(7): 1136-1141.
    Obernosterer, G., P. J. Leuschner, M. Alenius and J. Martinez (2006). "Post-transcriptional regulation of microRNA expression." RNA 12(7): 1161-1167.
    Ohnuma, S. and W. A. Harris (2003). "Neurogenesis and the cell cycle." Neuron 40(2): 199-208.
    Olde Loohuis, N. F., A. Kos, G. J. Martens, H. Van Bokhoven, N. Nadif Kasri and A. Aschrafi (2012). "MicroRNA networks direct neuronal development and plasticity." Cell Mol Life Sci 69(1): 89-102.
    Parsons, M. J., C. H. Grimm, J. L. Paya-Cano, K. Sugden, W. Nietfeld, H. Lehrach and L. C. Schalkwyk (2008). "Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function." Mamm Genome 19(7-8): 552-560.
    Pfeffer, S., A. Sewer, M. Lagos-Quintana, R. Sheridan, C. Sander, F. A. Grasser, L. F. van Dyk, C. K. Ho, S. Shuman, M. Chien, J. J. Russo, J. Ju, G. Randall, B. D. Lindenbach, C. M. Rice, V. Simon, D. D. Ho, M. Zavolan and T. Tuschl (2005). "Identification of microRNAs of the herpesvirus family." Nat Methods 2(4): 269-276.
    Popovic, R., L. E. Riesbeck, C. S. Velu, A. Chaubey, J. Zhang, N. J. Achille, F. E. Erfurth, K. Eaton, J. Lu, H. L. Grimes, J. Chen, J. D. Rowley and N. J. Zeleznik-Le (2009). "Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization." Blood 113(14): 3314-3322.
    Rodriguez, O. C., A. W. Schaefer, C. A. Mandato, P. Forscher, W. M. Bement and C. M. Waterman-Storer (2003). "Conserved microtubule-actin interactions in cell movement and morphogenesis." Nat Cell Biol 5(7): 599-609.
    Schulze, H., M. Dose, M. Korpal, I. Meyer, J. E. Italiano, Jr. and R. A. Shivdasani (2008). "RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules." J Biol Chem 283(20): 14109-14119.
    Silber, J., D. A. Lim, C. Petritsch, A. I. Persson, A. K. Maunakea, M. Yu, S. R. Vandenberg, D. G. Ginzinger, C. D. James, J. F. Costello, G. Bergers, W. A. Weiss, A. Alvarez-Buylla and J. G. Hodgson (2008). "miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells." BMC Med 6: 14.
    Skene, J. H. (1989). "Axonal growth-associated proteins." Annu Rev Neurosci 12: 127-156.
    Smalheiser, N. R., G. Lugli, A. L. Lenon, J. M. Davis, V. I. Torvik and J. Larson (2010). "Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus." ASN Neuro 2(1): e00028.
    Smirnova, L., A. Grafe, A. Seiler, S. Schumacher, R. Nitsch and F. G. Wulczyn (2005). "Regulation of miRNA expression during neural cell specification." Eur J Neurosci 21(6): 1469-1477.
    Stark, K. L., B. Xu, A. Bagchi, W. S. Lai, H. Liu, R. Hsu, X. Wan, P. Pavlidis, A. A. Mills, M. Karayiorgou and J. A. Gogos (2008). "Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model." Nat Genet 40(6): 751-760.
    Su, H. M. (2010). "Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance." J Nutr Biochem 21(5): 364-373.
    Szulwach, K. E., X. Li, R. D. Smrt, Y. Li, Y. Luo, L. Lin, N. J. Santistevan, W. Li, X. Zhao and P. Jin (2010). "Cross talk between microRNA and epigenetic regulation in adult neurogenesis." J Cell Biol 189(1): 127-141.
    Tanzer, A., C. T. Amemiya, C. B. Kim and P. F. Stadler (2005). "Evolution of microRNAs located within Hox gene clusters." J Exp Zool B Mol Dev Evol 304(1): 75-85.
    Tanzer, A. and P. F. Stadler (2004). "Molecular evolution of a microRNA cluster." J Mol Biol 339(2): 327-335.
    Treiber, T., N. Treiber and G. Meister (2012). "Regulation of microRNA biogenesis and function." Thromb Haemost 107(4): 605-610.
    Updike, D. L. and S. Strome (2009). "A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans." Genetics 183(4): 1397-1419.
    Varghese, J., S. F. Lim and S. M. Cohen (2010). "Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe." Genes Dev 24(24): 2748-2753.
    Wang, X. J., J. L. Reyes, N. H. Chua and T. Gaasterland (2004). "Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets." Genome Biol 5(9): R65.
    Wienholds, E., W. P. Kloosterman, E. Miska, E. Alvarez-Saavedra, E. Berezikov, E. de Bruijn, H. R. Horvitz, S. Kauppinen and R. H. Plasterk (2005). "MicroRNA expression in zebrafish embryonic development." Science 309(5732): 310-311.
    Woltering, J. M. and A. J. Durston (2008). "MiR-10 represses HoxB1a and HoxB3a in zebrafish." PLoS One 3(1): e1396.
    Yashiro, K., T. T. Riday, K. H. Condon, A. C. Roberts, D. R. Bernardo, R. Prakash, R. J. Weinberg, M. D. Ehlers and B. D. Philpot (2009). "Ube3a is required for experience-dependent maturation of the neocortex." Nat Neurosci 12(6): 777-783.
    Yekta, S., I. H. Shih and D. P. Bartel (2004). "MicroRNA-directed cleavage of HOXB8 mRNA." Science 304(5670): 594-596.
    Yu, J. Y., K. H. Chung, M. Deo, R. C. Thompson and D. L. Turner (2008). "MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation." Exp Cell Res 314(14): 2618-2633.
    Zeng, Y. (2006). "Principles of micro-RNA production and maturation." Oncogene 25(46): 6156-6162.
    Zhang, H., F. A. Kolb, V. Brondani, E. Billy and W. Filipowicz (2002). "Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP." EMBO J 21(21): 5875-5885.
    Zhang, K., L. Duan, Q. Ong, Z. Lin, P. M. Varman, K. Sung and B. Cui (2014). "Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth." PLoS One 9(3): e92917.
    Zhou, R., P. Yuan, Y. Wang, J. G. Hunsberger, A. Elkahloun, Y. Wei, P. Damschroder-Williams, J. Du, G. Chen and H. K. Manji (2009). "Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers." Neuropsychopharmacology 34(6): 1395-1405.

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE