| 研究生: |
王怡瑄 Wang , I-Hsuan |
|---|---|
| 論文名稱: |
矽化合物薄膜熱傳導係數之量測技術研究與溫度波分析法之應用 Study on the Measurement Techniques for Thermal Conductivity of Silicon Compound Thin Films and Application of Temperature Wave Analysis Method |
| 指導教授: |
温昌達
Wen , Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 矽化合物薄膜 、薄膜熱傳導係數量測方法 、實驗量測 、溫度波分析法 |
| 外文關鍵詞: | Temperature Wave Analysis Method, Thermal Conductivity, Silicon Compound Thin Films |
| 相關次數: | 點閱:36 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子元件尺寸縮減與功率密度增加,準確掌握薄膜熱傳行為對於熱管理與元件可靠性愈發重要,然而現有多數量測方法在成本、破壞性或解析度方面均有所侷限。本研究針對薄膜熱傳導係數之量測技術進行探討,並集中於溫度波分析法於熱性質測量上的應用與驗證。
本研究首先整理與分析常見之熱傳導係數量測技術,分為穩態法以及瞬態法,並比較其優缺點與適用範圍。接著以溫度波分析法為核心,建立具參考價值的頻率選擇公式,針對不同厚度的二氧化矽薄膜進行實驗,探討其厚度、沉積製程與溫度變化對熱傳導係數的影響。結果顯示,熱傳導係數隨薄膜厚度增加而提升,符合彈道傳輸與尺寸效應的理論模型;不同方法鍍製的薄膜熱傳導係數也會有所差距;並且在變溫的情況下,薄膜的熱傳導係數也將隨著溫度提高而增加。
此外,本研究亦整理與比較不同矽化合物薄膜之熱傳導數據,並探討多層堆疊結構(SiO₂/Al₂O₃)對熱傳性質的影響,證實多層堆疊結構可有效降低聲子傳遞效率,使熱導率顯著下降。
Thermal management has become a crucial factor in maintaining device reliability with the continuous miniaturization and power density increase of electronic devices. Thin-film thermal conductivity differs significantly from bulk materials due to phonon-boundary scattering and size effects, which must be accurately characterized for next-generation microelectronic and optoelectronic devices.
This study established a thermal conductivity measurement system for silicon compound thin films based on the Temperature Wave Analysis Method (TWA). Thin films of silicon dioxide (SiO₂), silicon nitride (Si₃N₄), and silicon carbide (SiC), with thicknesses ranging from 45 nm to 600 nm, were investigated. A frequency selection criterion was proposed to optimize the accuracy of the measurement. Results show that thinner films exhibit lower thermal conductivity due to enhanced phonon scattering, and the thermal conductivity of SiO₂ thin films increases with temperature between 280 K and 360 K. Additionally, multilayer SiO₂/Al₂O₃ structures demonstrates a thermal conductivity reduction of up to 75.13 % compared with single-layer alumina, highlighting the potential of interface engineering in thermal management applications.
[1] X. Guo, S. Cheng, W. Cai, Y. Zhang, and X.-a. Zhang, "A Review of Carbon-Based Thermal Interface Materials: Mechanism, Thermal Measurements and Thermal Properties," Materials & Design, vol. 209, pp. 109936, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.matdes.2021.109936.
[2] Z. M. Zhang, "Thermal Properties of Solids and the Size Effect," in Nano/Microscale Heat Transfer, Z. M. Zhang Ed. Cham: Springer International Publishing, 2020, pp. 175-253.
[3] R. Schley, A. Berkovitz, S. Rinott, I. Shammass, A. Blumkin, and J. Steinhauer, "Planck Distribution of Phonons in a Bose-Einstein Condensate," Physical review letters, vol. 111, no. 5, pp. 055301, 2013.
[4] M. Handwerg, R. Mitdank, S. Levcenco, S. Schorr, and S. Fischer, "Thermal and Electrical Conductivity of Single Crystalline Kesterite Cu2ZnSnS4," Materials Research Express, vol. 7, pp. 105908, 10/01 2020, doi: 10.1088/2053-1591/abc276.
[5] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids: Oxford University Press, 2001. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780198507796.001.0001.
[6] K. Takayanagi, Y. Kondo, and H. Ohnishi, "Suspended Gold Nanowires: Ballistic Transport of Electrons," JSAP Int., vol. 3, 01/01 2001.
[7] D. Zhao, X. Qian, X. Gu, S. Jajja, and R. Yang, "Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials," Journal of Electronic Packaging, vol. 138, 12/01 2016, doi: 10.1115/1.4034605.
[8] 張天曜, "薄膜之熱傳導係數量測方法研究," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2008. [Online]. Available: https://hdl.handle.net/11296/5r4k3p
[9] S. Achmatowicz, I. Wyżkiewicz, E. Zwierkowska, and W. Łobodziński, "Measurements of Thermal Conductivity of Thin Films by Means of Comparative Method," Journal of Microelectronics and Electronic Packaging, vol. 1, no. 3, pp. 176-186, 2004.
[10] E. Jansen and E. Obermeier, "Thermal Conductivity Measurements on Thin Films Based on Micromechanical Devices," Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 118, 1996/03/01 1996, doi: 10.1088/0960-1317/6/1/029.
[11] J. L. Braun, D. H. Olson, J. T. Gaskins, and P. E. Hopkins, "A Steady-state Thermoreflectance Method to Measure Thermal Conductivity," Review of Scientific Instruments, vol. 90, no. 2, pp. 024905, 2019, doi: 10.1063/1.5056182.
[12] C. A. Paddock and G. L. Eesley, "Transient Thermoreflectance from Thin Metal Films," Journal of Applied Physics, vol. 60, no. 1, pp. 285-290, 1986, doi: 10.1063/1.337642.
[13] D. G. Cahill, "Analysis of Heat Flow in Layered Structures for Time-domain Thermoreflectance," Review of Scientific Instruments, vol. 75, no. 12, pp. 5119, 2004.
[14] P. Jiang, X. Qian, and R. Yang, "Tutorial: Time-domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials," Journal of Applied Physics, vol. 124, no. 16, pp. 161103, 2018, doi: 10.1063/1.5046944.
[15] D. J. Kirsch, J. Martin, R. Warzoha, M. McLean, D. Windover, and I. Takeuchi, "An Instrumentation Guide to Measuring Thermal Conductivity Using Frequency Domain Thermoreflectance (FDTR)," Review of Scientific Instruments, vol. 95, no. 10, pp. 103006, 2024, doi: 10.1063/5.0213738.
[16] D. G. Cahill and R. O. Pohl, "Thermal Conductivity of Amorphous Solids Above the Plateau," Physical Review B, vol. 35, no. 8, pp. 4067-4073, 03/15/ 1987, doi: 10.1103/PhysRevB.35.4067.
[17] S.-M. Lee and D. Cahill, "Heat Transport in Thin Dielectric Films," Journal of Applied Physics, vol. 81, pp. 2590-2595, 03/15 1997, doi: 10.1063/1.363923.
[18] R. G. Bhardwaj and N. Khare, "Review: 3-omega Technique for Thermal Conductivity Measurement—Contemporary and Advancement in Its Methodology," International Journal of Thermophysics, vol. 43, no. 9, pp. 139, 2022/07/19 2022, doi: 10.1007/s10765-022-03056-3.
[19] J. Wang, C. Ren, S. Ma, R. Xu, Y. Liu, and Y. Zhang, "Direct Measurement of In-Plane Thermal Conductivity of Microscale Suspended Thin Films Using a Novel 3ω Method," International Journal of Heat and Mass Transfer, vol. 219, pp. 124870, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124870.
[20] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity," Journal of Applied Physics, vol. 32, no. 9, pp. 1679-1684, 1961, doi: 10.1063/1.1728417.
[21] M. Li and M. Akoshima, "Appropriate Metallic Coating for Thermal Diffusivity Measurement of Nonopaque Materials with Laser Flash Method and Its Effect," International Journal of Heat and Mass Transfer, vol. 148, pp. 119017, 2020/02/01/ 2020, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119017.
[22] M. Ruoho, K. Valset, T. Finstad, and I. Tittonen, "Measurement of Thin Film Thermal Conductivity Using the Laser Flash Method," Nanotechnology, vol. 26, no. 19, pp. 195706, 2015/04/22 2015, doi: 10.1088/0957-4484/26/19/195706.
[23] T. Hashimoto and J. Morikawa, "Fourier Transform Temperature Wave Analysis," Netsu Sokutei, vol. 27, no. 3, pp. 141-151, 2000.
[24] I. Hatta, "Thermal Diffusivity Measurements of Thin Films and Multilayered Composites," International Journal of Thermophysics, vol. 11, no. 2, pp. 293-303, 1990/03/01 1990, doi: 10.1007/BF01133562.
[25] E. Amadi, A. Venkataraman, and C. Papadopoulos, "Nanoscale Self-assembly: Concepts, Applications and Challenges," Nanotechnology, vol. 33, 01/07 2022, doi: 10.1088/1361-6528/ac3f54.
[26] A. Sarangan, "5 - Nanofabrication," in Fundamentals and Applications of Nanophotonics, J. W. Haus Ed.: Woodhead Publishing, 2016, pp. 149-184.
[27] A. K. Eessaa and A. M. El-Shamy, "Review on Fabrication, Characterization, and Applications of Porous Anodic Aluminum Oxide Films with Tunable Pore Sizes for Emerging Technologies," Microelectronic Engineering, vol. 279, pp. 112061, 2023/07/15/ 2023, doi: https://doi.org/10.1016/j.mee.2023.112061.
[28] R. Curley, T. McCormack, and M. Phipps, "Low-pressure CVD and Plasma-enhanced CVD," ed: Accessed, 2018.
[29] A. Urrutia, P. J. Rivero, J. Goicoechea, and F. J. Arregui, "Chapter 23 - Micro/Nanodeposition Techniques for Enhanced Optical Fiber Sensors," in Handbook of Nanomaterials for Sensing Applications, C. M. Hussain and S. K. Kailasa Eds.: Elsevier, 2021, pp. 531-573.
[30] K. Gupta, N. K. Jain, and R. Laubscher, "Chapter 6 - Surface Property Enhancement of Gears," in Advanced Gear Manufacturing and Finishing, K. Gupta, N. K. Jain, and R. Laubscher Eds.: Academic Press, 2017, pp. 167-196.
[31] O. Graniel, M. Weber, S. Balme, P. Miele, and M. Bechelany, "Atomic Layer Deposition for Biosensing Applications," Biosensors and Bioelectronics, vol. 122, pp. 147-159, 2018/12/30/ 2018, doi: https://doi.org/10.1016/j.bios.2018.09.038.
[32] T. Suntola and J. Antson, "Method for Producing Compound Thin Films," ed: Google Patents, 1977.
[33] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications," Materials Today, vol. 17, no. 5, pp. 236-246, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.mattod.2014.04.026.
[34] V. Kanneboina, "Detailed Review on c-Si/a-Si:H Heterojunction Solar Cells in Perspective of Experimental and Simulation," Microelectronic Engineering, vol. 265, pp. 111884, 2022/09/15/ 2022, doi: https://doi.org/10.1016/j.mee.2022.111884.
[35] S. W. Fong et al., "Thermal Conductivity Measurement of Amorphous Dielectric Multilayers for Phase-change Memory Power Reduction," Journal of Applied Physics, vol. 120, no. 1, 2016, doi: 10.1063/1.4955165.
[36] N. Marsi, B. Y. Majlis, F. Mohd-Yasin, H. E. Z. Abidin, and A. A. Hamzah, "A Review: Properties of Silicon Carbide Materials in MEMS Application," International Journal of Nanoelectronics & Materials, vol. 13, 2020.
[37] D. M. Rowe, CRC Handbook of Thermoelectrics. CRC press, 1995.
[38] T. Hashimoto and J. Morikawa, "Temperature Wave Analysis," The Hitachi scientific instrument news, vol. 9, pp. 317, 2017.
[39] 張祐銓, "溫度波分析法應用於二氧化矽薄膜熱傳導係數量測之實驗與數值研究," 碩士, 機械工程學系, 國立成功大學, 台南市, 2020. [Online]. Available: https://hdl.handle.net/11296/keve7x
[40] 黃俊凱, "以溫度波分析法量測奈米尺度之二氧化矽薄膜於溫度影響下之熱傳導係數," 碩士, 機械工程學系, 國立成功大學, 台南市, 2021. [Online]. Available: https://hdl.handle.net/11296/5fu4f3
[41] 楊浚霆, "以溫度波分析法量測原子層沉積氧化鋁薄膜熱傳導係數之研究," 碩士, 機械工程學系, 國立成功大學, 台南市, 2024. [Online]. Available: https://hdl.handle.net/11296/ha8btn
[42] 黃前程, "以溫度波分析法探討濺鍍二氧化矽奈米薄膜之熱傳導係數," 碩士, 機械工程學系, 國立成功大學, 台南市, 2021. [Online]. Available: https://hdl.handle.net/11296/c55r9q
[43] G. Hu, G. Orkoulas, and P. D. Christofides, "Modeling and Control of Film Porosity in Thin Film Deposition," Chemical Engineering Science, vol. 64, no. 16, pp. 3668-3682, 2009.
[44] 簡恒傑, "微奈米尺度薄膜之熱傳導量測方法研究開發," 博士, 工程與系統科學系, 國立清華大學, 新竹市, 2010. [Online]. Available: https://hdl.handle.net/11296/b29326
[45] T. Yamane, N. Nagai, S.-i. Katayama, and M. Todoki, "Measurement of Thermal Conductivity of Silicon Dioxide Thin Films Using a 3ω Method," Journal of applied physics, vol. 91, no. 12, pp. 9772-9776, 2002.
[46] 賴威志, "介電薄膜熱傳導係數的量測與探討," 碩士, 微機電工程研究所, 國立清華大學, 新竹市, 2007. [Online]. Available: https://hdl.handle.net/11296/hwdeyy
[47] L. Tang and C. Dames, "Effects of Thermal Annealing on Thermal Conductivity of LPCVD Silicon Carbide Thin Films," Journal of Applied Physics, vol. 134, no. 16, 2023, doi: 10.1063/5.0161108.
[48] D. B. Hondongwa, L. R. Olasov, B. C. Daly, S. W. King, and J. Bielefeld, "Thermal Conductivity and Sound Velocity Measurements of Plasma Enhanced Chemical Vapor Deposited a-SiC:H Thin Films," Thin Solid Films, vol. 519, no. 22, pp. 7895-7898, 2011/09/01/ 2011, doi: https://doi.org/10.1016/j.tsf.2011.05.014.
[49] 劉勇志, "3w方法量測熱傳導係數之溫度效應," 碩士, 微機電工程研究所, 國立清華大學, 新竹市, 2004. [Online]. Available: https://hdl.handle.net/11296/mk8u6c
[50] S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, and M. Rothschild, "A New Method for Measuring Thermal Conductivity of Thin Films," Review of Scientific Instruments, vol. 68, no. 10, pp. 3828-3834, 1997, doi: 10.1063/1.1148035.
[51] X. Liu , J. L. Feldman, D. G. Cahill, R. S. Crandall, N. Bernstein, D. M. Photiadis, M. J. Mehl, and D. A. Papaconstantopoulos, "High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film," Physical Review Letters, vol. 102, no. 3, pp. 035901, 01/21/ 2009, doi: 10.1103/PhysRevLett.102.035901.
[52] B. L. Zink, R. Pietri, and F. Hellman, "Thermal Conductivity and Specific Heat of Thin-Film Amorphous Silicon," Physical Review Letters, vol. 96, no. 5, pp. 055902, 02/07/ 2006, doi: 10.1103/PhysRevLett.96.055902.
[53] F. Völklein, "Thermal Conductivity and Diffusivity of a Thin Film SiO2Si3N4 Sandwich System," Thin Solid Films, vol. 188, no. 1, pp. 27-33, 1990/07/01/ 1990, doi: https://doi.org/10.1016/0040-6090(90)90190-O.
[54] D. G. Cahill, M. Katiyar, and J. R. Abelson, "Thermal Conductivity of a-Si:H Thin Films," Physical Review B, vol. 50, no. 9, pp. 6077-6081, 09/01/ 1994, doi: 10.1103/PhysRevB.50.6077.
[55] S.-M. Lee and D. G. Cahill, "Heat Transport in Thin Dielectric Films," Journal of Applied Physics, vol. 81, no. 6, pp. 2590-2595, 1997, doi: 10.1063/1.363923.
[56] M. Le Gallo and A. Sebastian, "An Overview of Phase-change Memory Device Physics," Journal of Physics D: Applied Physics, vol. 53, no. 21, pp. 213002, 2020/03/26 2020, doi: 10.1088/1361-6463/ab7794.