| 研究生: |
林建宇 Lin, Jian-Yu |
|---|---|
| 論文名稱: |
亨丁頓氏症發病前蛋白質降解路徑在中樞神經系統及周邊組織的角色 Functional Roles of Protein Degradation Pathways in Central Nervous System and Peripheral Tissues before the Onset of Huntington’s Disease |
| 指導教授: |
楊尚訓
Yang, Shang-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 亨丁頓氏症 、泛素-蛋白酶體系統 、細胞自噬 、周邊組織 |
| 外文關鍵詞: | Huntington disease, ubiquitin–proteasome system (UPS), autophagy, peripheral tissues |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亨丁頓氏症是一種顯性遺傳疾病,致病原因為突變的亨丁頓基因產生過多的CAG三核苷酸重複序列,進而造成亨丁頓蛋白質N端帶有異常的多穀氨酸長鏈。亨丁頓基因廣泛的表現在人體的各個組織,因此突變亨丁頓蛋白質會聚集在中樞神經系統和周邊組織,例如心臟和肝臟,造成全身性的病狀。為了避免這些病狀的產生,用來清除突變亨丁頓蛋白質的泛素-蛋白酶體系統和細胞自噬是有潛力的治療對策之一。本篇研究的目的為在亨丁頓氏症發病前的細胞和動物模式中比較這兩種清除路徑在中樞神經系統和周邊組織的表現。本篇論文在兩種神經細胞株,以及四種周邊組織細胞株中表現突變亨丁頓蛋白質做為細胞實驗的材料。動物模式則是採用亨丁頓氏症基因轉殖小鼠,為帶有突變亨丁頓蛋白質第一外顯子和增強綠螢光蛋白的融合蛋白的小鼠模式。根據之前的研究發現,這些亨丁頓小鼠在8.5個月時顯現動作功能缺失的情形,為了探討亨丁頓氏症發病前泛素-蛋白酶體系統和細胞自噬的表現,我們選擇三個不同的時間點(2、5和8個月)的亨丁頓氏症基因轉殖小鼠,利用西方墨點法來比較泛素-蛋白酶體系統標誌”泛素”和細胞自噬標誌”LC3-II”的表現。細胞實驗結果顯示,表現突變亨丁頓蛋白質的神經細胞其LC3-II的表現顯著性的上升,但在腎臟細胞則隨著時間顯著性的下降。然而泛素聚集在表現突變亨丁頓蛋白質的神經細胞及腎臟細胞隨著時間都有顯著性的增加。在動物實驗方面,亨丁頓小鼠的大腦皮質組織、紋狀體組織、肺臟組織及肝臟組織在8個月時泛素有明顯聚集的情況,而LC3-II的表現在8個月大的亨丁頓小鼠心臟組織有顯著性的下降。實驗結果顯示泛素-蛋白酶體系統在大腦皮質組織、紋狀體組織、肺臟組織及肝臟組織在發病前已經損壞。然而只有心臟組織其細胞自噬的活性有下降。這些發現顯示,在我們亨丁頓氏症發病前的小鼠模式中,泛素-蛋白酶體系統在大腦皮質組織、紋狀體組織、肺臟組織和肝臟組織比細胞自噬來的更為重要。
Huntington disease (HD) is an autosomal dominant disorder caused by a mutantion of CAG repeat expansion in huntingtin (HTT) gene, resulting an abnormally long polyglutamine tract at the N terminus of HTT. The HTT gene is widely expressed in human tissues, and mutant HTT protein forms aggregates in central nervous system (CNS) and several peripheral tissues, such as heart and liver, leading to widespread pathology. In order to prevent pathological phenotypes, clearance of mutant HTT, mediated by both the ubiquitin–proteasome system (UPS) and autophagy, is one of potential strategies. Therefore, the aim of this study was to compare these two degradation pathways in CNS and peripheral tissues before the onset of HD in vitro and in vivo. Two neuronal and four peripheral tissue cell lines expressing mutant huntingtin were used in cell experiments. HD transgenic mice carrying GFP fused with mutant HTT exon 1 were used in this study. According to our previous studies, these HD transgenic mice showed the onset of motor deficit after 8.5 months of age. In order to determine UPS and autophagy before the onset of HD, we chose three different age points (2, 5 and 8 months) in HD transgenic mice to compare expression profiles of ubiquitin, an UPS marker, and LC3-II, an autophagy marker, by western blot analyses. The data showed that the expression of LC3-II significantly increased in neuronal cells but significantly decreased in kidney cells after expressing mutant huntingtin. However, the expression of ubiquitin positive aggregate both in neuronal cells and kidney cells significantly increased after expressing mutant huntingtin in a time dependent manner. Next, in vivo data showed that the expression of ubiquitin positive aggregate in cortex, striatum, lung and liver significantly increased in 8 months old HD mice compared to those of 8 months old control mice. In addition, the expression of LC3-II in heart, but not other tissues, significantly decreased in 8 months old HD mice compared to those of control mice. These results indicated that UPS was impaired in cortex, striatum, lung and liver before the onset in our HD mouse model. However, the activity of autophagy was only reduced in heart. In conclusion, our findings showed that UPS was more important than autophagy in cortex, striatum lung and liver, but not in heart, before the onset of HD.
Albin, R. L. and D. A. Tagle (1995). "Genetics and molecular biology of Huntington's disease." Trends Neurosci 18(1): 11-14.
Amerik, A., S. Swaminathan, et al. (1997). "In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome." EMBO J 16(16): 4826-4838.
Anderson, K., D. Craufurd, et al. (2011). "An International Survey-based Algorithm for the Pharmacologic Treatment of Obsessive-Compulsive Behaviors in Huntington's Disease." PLoS Curr 3: RRN1261.
Atwal, R. S. and R. Truant (2008). "A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy." Autophagy 4(1): 91-93.
Bence, N. F., R. M. Sampat, et al. (2001). "Impairment of the ubiquitin-proteasome system by protein aggregation." Science 292(5521): 1552-1555.
Bryan, B., Y. Cai, et al. (2005). "Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth." FEBS Lett 579(5): 1015-1019.
Busse, M. E., G. Hughes, et al. (2008). "Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington's disease." J Neurol 255(10): 1534-1540.
Cannella, M., V. Maglione, et al. (2009). "DNA instability in replicating Huntington's disease lymphoblasts." BMC Med Genet 10: 11.
Cha, J. H., C. M. Kosinski, et al. (1998). "Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene." Proc Natl Acad Sci U S A 95(11): 6480-6485.
Cheng, P. H., C. L. Li, et al. (2013). "Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein." Brain Struct Funct 218(1): 283-294.
Chiang, M. C., Y. Chern, et al. (2011). "The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease." Biochim Biophys Acta 1812(9): 1111-1120.
Chilton, J. K. (2006). "Molecular mechanisms of axon guidance." Dev Biol 292(1): 13-24.
Cui, L., H. Jeong, et al. (2006). "Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration." Cell 127(1): 59-69.
Dahlgren, K. N., A. M. Manelli, et al. (2002). "Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability." J Biol Chem 277(35): 32046-32053.
Davies, S. W., M. Turmaine, et al. (1997). "Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation." Cell 90(3): 537-548.
Di Maio, L., F. Squitieri, et al. (1993). "Onset symptoms in 510 patients with Huntington's disease." J Med Genet 30(4): 289-292.
DiFiglia, M., E. Sapp, et al. (1997). "Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain." Science 277(5334): 1990-1993.
Djousse, L., B. Knowlton, et al. (2002). "Weight loss in early stage of Huntington's disease." Neurology 59(9): 1325-1330.
Dorsey, R., K. Biglan, et al. (2011). "Use of Tetrabenazine in Huntington Disease Patients on Antidepressants or with Advanced Disease: Results from the TETRA-HD Study." PLoS Curr 3: RRN1283.
Feigin, A. (2011). "Pridopidine in treatment of Huntington's disease: beyond chorea?" Lancet Neurol 10(12): 1036-1037.
Fukata, Y. and M. Fukata (2010). "Protein palmitoylation in neuronal development and synaptic plasticity." Nat Rev Neurosci 11(3): 161-175.
Gauthier, L. R., B. C. Charrin, et al. (2004). "Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules." Cell 118(1): 127-138.
Giorgini, F. and P. J. Muchowski (2005). "Connecting the dots in Huntington's disease with protein interaction networks." Genome Biol 6(3): 210.
Gray, M., D. I. Shirasaki, et al. (2008). "Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice." J Neurosci 28(24): 6182-6195.
Greenamyre, J. T. and I. Shoulson (2002). "We need something better, and we need it now: fetal striatal transplantation in Huntington's disease?" Neurology 58(5): 675-676.
Gu, X., E. R. Greiner, et al. (2009). "Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice." Neuron 64(6): 828-840.
Hailey, D. W., A. S. Rambold, et al. (2010). "Mitochondria supply membranes for autophagosome biogenesis during starvation." Cell 141(4): 656-667.
Hayashi-Nishino, M., N. Fujita, et al. (2009). "A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation." Nat Cell Biol 11(12): 1433-1437.
Heng, M. Y., P. J. Detloff, et al. (2008). "Rodent genetic models of Huntington disease." Neurobiol Dis 32(1): 1-9.
Hershko, A. and A. Ciechanover (1998). "The ubiquitin system." Annu Rev Biochem 67: 425-479.
Huang, C. C., P. W. Faber, et al. (1998). "Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins." Somat Cell Mol Genet 24(4): 217-233.
Imarisio, S., J. Carmichael, et al. (2008). "Huntington's disease: from pathology and genetics to potential therapies." Biochem J 412(2): 191-209.
Jana, N. R., E. A. Zemskov, et al. (2001). "Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release." Hum Mol Genet 10(10): 1049-1059.
Jankovic, J. and K. Clarence-Smith (2011). "Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders." Expert Rev Neurother 11(11): 1509-1523.
Jeong, H., F. Then, et al. (2009). "Acetylation targets mutant huntingtin to autophagosomes for degradation." Cell 137(1): 60-72.
Kalchman, M. A., R. K. Graham, et al. (1996). "Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme." J Biol Chem 271(32): 19385-19394.
Kawakami, T., T. Suzuki, et al. (1999). "Isolation and characterization of cytosolic and membrane-bound deubiquitinylating enzymes from bovine brain." J Biochem 126(3): 612-623.
Kiriazis, H., N. L. Jennings, et al. (2012). "Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of Huntington's disease." J Physiol 590(Pt 22): 5845-5860.
Lalic, N. M., J. Maric, et al. (2008). "Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion." Arch Neurol 65(4): 476-480.
Layfield, R., J. R. Cavey, et al. (2003). "Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders." Ageing Res Rev 2(4): 343-356.
Levine, B. and G. Kroemer (2008). "Autophagy in the pathogenesis of disease." Cell 132(1): 27-42.
Li, X., C. E. Wang, et al. (2010). "Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments." Hum Mol Genet 19(12): 2445-2455.
Lin, C. H., S. Tallaksen-Greene, et al. (2001). "Neurological abnormalities in a knock-in mouse model of Huntington's disease." Hum Mol Genet 10(2): 137-144.
Lodi, R., A. H. Schapira, et al. (2000). "Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy." Ann Neurol 48(1): 72-76.
Mabb, A. M. and M. D. Ehlers (2010). "Ubiquitination in postsynaptic function and plasticity." Annu Rev Cell Dev Biol 26: 179-210.
Maiuri, M. C., E. Zalckvar, et al. (2007). "Self-eating and self-killing: crosstalk between autophagy and apoptosis." Nat Rev Mol Cell Biol 8(9): 741-752.
Mangiarini, L., K. Sathasivam, et al. (1996). "Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice." Cell 87(3): 493-506.
Martinez-Vicente, M. and A. M. Cuervo (2007). "Autophagy and neurodegeneration: when the cleaning crew goes on strike." Lancet Neurol 6(4): 352-361.
Martinez-Vicente, M., Z. Talloczy, et al. (2010). "Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease." Nat Neurosci 13(5): 567-576.
Michalik, A. and C. Van Broeckhoven (2004). "Proteasome degrades soluble expanded polyglutamine completely and efficiently." Neurobiol Dis 16(1): 202-211.
Moffitt, H., G. D. McPhail, et al. (2009). "Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease." PLoS One 4(11): e8025.
Nijman, S. M., M. P. Luna-Vargas, et al. (2005). "A genomic and functional inventory of deubiquitinating enzymes." Cell 123(5): 773-786.
Ona, V. O., M. Li, et al. (1999). "Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease." Nature 399(6733): 263-267.
Orr, A. L., S. Li, et al. (2008). "N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking." J Neurosci 28(11): 2783-2792.
Ossato, G., M. A. Digman, et al. (2010). "A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis." Biophys J 98(12): 3078-3085.
Panov, A. V., C. A. Gutekunst, et al. (2002). "Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines." Nat Neurosci 5(8): 731-736.
Poirier, M. A., H. Li, et al. (2002). "Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization." J Biol Chem 277(43): 41032-41037.
Ravikumar, B., S. Imarisio, et al. (2008). "Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease." J Cell Sci 121(Pt 10): 1649-1660.
Ravikumar, B., C. Vacher, et al. (2004). "Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease." Nat Genet 36(6): 585-595.
Rosas, H. D., A. K. Liu, et al. (2002). "Regional and progressive thinning of the cortical ribbon in Huntington's disease." Neurology 58(5): 695-701.
Rothenberg, C., D. Srinivasan, et al. (2010). "Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy." Hum Mol Genet 19(16): 3219-3232.
Rubinsztein, D. C. (2006). "The roles of intracellular protein-degradation pathways in neurodegeneration." Nature 443(7113): 780-786.
Sassone, J., C. Colciago, et al. (2009). "Huntington's disease: the current state of research with peripheral tissues." Exp Neurol 219(2): 385-397.
Sathasivam, K., C. Hobbs, et al. (1999). "Formation of polyglutamine inclusions in non-CNS tissue." Hum Mol Genet 8(5): 813-822.
Saudou, F., S. Finkbeiner, et al. (1998). "Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions." Cell 95(1): 55-66.
Schilling, G., M. W. Becher, et al. (1999). "Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin." Hum Mol Genet 8(3): 397-407.
Schwartz, D. C. and M. Hochstrasser (2003). "A superfamily of protein tags: ubiquitin, SUMO and related modifiers." Trends Biochem Sci 28(6): 321-328.
Sharp, A. H., S. J. Loev, et al. (1995). "Widespread expression of Huntington's disease gene (IT15) protein product." Neuron 14(5): 1065-1074.
Shen, W. and B. Ganetzky (2009). "Autophagy promotes synapse development in Drosophila." J Cell Biol 187(1): 71-79.
Shibata, M., T. Lu, et al. (2006). "Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1." J Biol Chem 281(20): 14474-14485.
Shirendeb, U., A. P. Reddy, et al. (2011). "Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage." Hum Mol Genet 20(7): 1438-1455.
Shirendeb, U. P., M. J. Calkins, et al. (2012). "Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease." Hum Mol Genet 21(2): 406-420.
Simo, S., Y. Jossin, et al. (2010). "Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration." J Neurosci 30(16): 5668-5676.
Slow, E. J., J. van Raamsdonk, et al. (2003). "Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease." Hum Mol Genet 12(13): 1555-1567.
Steffan, J. S., N. Agrawal, et al. (2004). "SUMO modification of Huntingtin and Huntington's disease pathology." Science 304(5667): 100-104.
Stuwe, S. H., O. Goetze, et al. (2013). "Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease." Neurology 80(8): 743-746.
Subramaniam, S., R. G. Mealer, et al. (2010). "Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9." J Biol Chem 285(27): 20428-20432.
Taylor, J. P., F. Tanaka, et al. (2003). "Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein." Hum Mol Genet 12(7): 749-757.
TheHuntington'sDiseaseCollaborativeResearchGroup (1993). "A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. ." Cell 72(6): 971-983.
Thompson, L. M., C. T. Aiken, et al. (2009). "IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome." J Cell Biol 187(7): 1083-1099.
Trottier, Y., D. Devys, et al. (1995). "Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form." Nat Genet 10(1): 104-110.
Trushina, E., R. B. Dyer, et al. (2004). "Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro." Mol Cell Biol 24(18): 8195-8209.
Tydlacka, S., C. E. Wang, et al. (2008). "Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons." J Neurosci 28(49): 13285-13295.
van Duijn, E., E. M. Kingma, et al. (2007). "Psychopathology in verified Huntington's disease gene carriers." J Neuropsychiatry Clin Neurosci 19(4): 441-448.
Venkatraman, P., R. Wetzel, et al. (2004). "Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins." Mol Cell 14(1): 95-104.
Vonsattel, J. P. and M. DiFiglia (1998). "Huntington disease." J Neuropathol Exp Neurol 57(5): 369-384.
Wairkar, Y. P., H. Toda, et al. (2009). "Unc-51 controls active zone density and protein composition by downregulating ERK signaling." J Neurosci 29(2): 517-528.
Wang, C. E., S. Tydlacka, et al. (2008). "Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease." Hum Mol Genet 17(17): 2738-2751.
Wang, J., C. E. Wang, et al. (2008). "Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice." J Cell Biol 180(6): 1177-1189.
Wang, Q. J., Y. Ding, et al. (2006). "Induction of autophagy in axonal dystrophy and degeneration." J Neurosci 26(31): 8057-8068.
Wang, T., U. Lao, et al. (2009). "TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease." J Cell Biol 186(5): 703-711.
Westbrook, T. F., G. Hu, et al. (2008). "SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation." Nature 452(7185): 370-374.
Wheeler, V. C., J. K. White, et al. (2000). "Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice." Hum Mol Genet 9(4): 503-513.
Wheelock, V. L., T. Tempkin, et al. (2003). "Predictors of nursing home placement in Huntington disease." Neurology 60(6): 998-1001.
Wong, P. T., P. L. McGeer, et al. (1982). "Ornithine aminotransferase in Huntington's disease." Brain Res 231(2): 466-471.
Woodman, B., R. Butler, et al. (2007). "The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes." Brain Res Bull 72(2-3): 83-97.
Yamamoto, A., J. J. Lucas, et al. (2000). "Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease." Cell 101(1): 57-66.
Yang, Z. and D. J. Klionsky (2010). "Mammalian autophagy: core molecular machinery and signaling regulation." Curr Opin Cell Biol 22(2): 124-131.
Youle, R. J. and D. P. Narendra (2011). "Mechanisms of mitophagy." Nat Rev Mol Cell Biol 12(1): 9-14.
Zakzanis, K. K. (1998). "The subcortical dementia of Huntington's disease." J Clin Exp Neuropsychol 20(4): 565-578.
Zheng, S., E. B. Clabough, et al. (2010). "Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice." PLoS Genet 6(2): e1000838.
Zuccato, C. and E. Cattaneo (2007). "Role of brain-derived neurotrophic factor in Huntington's disease." Prog Neurobiol 81(5-6): 294-330.
Zuccato, C., M. Tartari, et al. (2003). "Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes." Nat Genet 35(1): 76-83.