| 研究生: |
莫柔婷 Arifianti, Qurrotin A’yunina Maulida Okta |
|---|---|
| 論文名稱: |
具防火性能之水膜流佈建築物隔間材的熱傳機制分析 Analysis on Heat Transfer Mechanism of Fireproof Building Partitions with Flowing Water Film |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 未知表面熱傳特性 、防火構件建材 、水膜 、逆向熱傳導問題 |
| 外文關鍵詞: | Unknown Heat Transfer Characteristics, Fireproof Materials, Water Film, InverseHeat Conduction Scheme. |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水膜系統應用於消防工程上,往往能有效防阻火災延燒與提升建築物防火構件防火阻熱性能;為了有效透析水膜系統於提升防火阻熱性能的效能,防火構件於火場中的曝火面熱傳特性必須為已知條件。然而,火場伴隨的高溫與強烈熱輻射,使得防火構件的曝火面熱傳特性難以透過現有量測工具獲知。因此,本研究將結合拉式轉換、中央差分法、最小平方法之混合逆算熱傳法,配合非曝火面實驗數據求解二維暫態逆向熱傳導問題,以預測防火構件之曝火面熱傳特性。並採用不含有防火阻熱性能之玻璃板、鐵捲門與布幕等三種防火構件建材進行探討,以期獲得三種防火構件建材表面是否含有水膜時的曝火面熱傳特性。
研究結果顯示,水膜附著於三種防火構件建材表面時,由於水本身具有高蒸發潛熱與高蒸發顯熱,使得水膜於建材表面蒸發時,能夠維持建材表面平均溫度大約低於水的沸點溫度,由於水的沸點溫度低於建材燃點溫度,所以此水膜得以有效提升防火構件建材的阻熱性能。
Water film flows are an effective means of inhibiting the spread of fire. To investigate the effectiveness of water film flows, the unknown heat transfer characteristics must be known on both surfaces of the fireproof material. However, due to the extreme heat, measuring the temperature on the hot surface is problematic. Consequently, in the present study, the unknown surface heat flux, surface temperature, and overall heat-transfer coefficient are computed using a hybrid inverse heat conduction scheme comprising the Laplace transform and finite difference methods with a sequential-in-time concept and the least squares method based on the experimental temperature measurements obtained on the cold surface. The proposed method is applied to investigate the heat transfer characteristics of three different materials with and without a water film flow, namely a glass pane, a steel roller door, and a curtain.
Generally, the results show that for each material, the use of a water film flow yields a significant improvement in the heat resistance on both the hot and cold surfaces due to an enhanced latent and sensible heat transfer. Specifically, the water film lowers the average surface temperature due to the effects of water evaporation.
1. Furness, Andrew., Muckett, Martin., “Introduction to fire safety management,” Butterworth-Heinemann, Oxford, 2007.
2. Pagni, P. J., “Fire physics – promises, problems and progress. In: Proceedings of the Second International Symposium on Fire Safety Science,” IAFSS, Tokyo, Japan, p. 58, 1989.
3. Keski-Rahkonen O., “Breaking of window glass close to fire,” Fire and Materials, Vol. 12, p. 62, 1988.
4. Skelly, M. J., Roby, R. J., Beyler, C. L., “An experimental investigation of glass breakage in compartment fires,” J. Fire Protection Engineering, Vol. 3, p. 25, 1991.
5. Joshi, A. A., Pagni, P. J., “Fire-induced thermal fields in window glass I-theory”, Fire Safety Journal, Vol. 22, p. 25, 1994.
6. Lee, S. K., Ho, M. C., Chen, J. J., Lin, C. Y., Lin, T. H., “Fire resistant evaluation of a steel roller shutter with water-film cooling system,” Applied Thermal Engineering, Vol. 58, p. 465, 2013.
7. Hu, W. C., Nurcholik, S. D., Lo, W. H., Lee, S. K., Ho, M. C., Wang, T. C., Lin, T. H., “Heat resistance of a fireproof curtain with water film”, National Conference On Combustion Science And Technology 24th, Tainan, Taiwan, 2014.
8. ISO834-1,“Fire-Resistance Tests-Elements of Building Construction: Part 1 General Requirements, International Organization for Standardization,” 1999.
9. CNS 14803, “Method of fire resistance tests for rolling shutter of buildings,” Bureau of Standards, Metrology & Inspection, M.C.E.A., ROC, 2002.
10. Sha, W. T., Soo, S. L., “Instability of flow of liquid film over a heated surface,” Third International Symposium on Multiphase Flow, Xian, China, September 19-21, 1994.
11. Sozbir, N., Chang, J. W., Yao, S. C., “Heat transfer of impacting water mist on high temperature metal surfaces,” J. Heat Transfer, Vol. 125, p. 70, 2003.
12. Zhang, H. W., He, Y. L., Tao, W. Q., “Numerical study on liquid film cooling at high pressure,” Numerical Heat Transfer, Part A: Applications, Vol. 58, p. 163, 2010.
13. Thomas, W. C., Sunderland, J. E., “Heat transfer between a plane surface and air containing suspended water droplet,” Industrial and Engineering Chemistry Fundamentals, Vol. 9, p. 369, 1970.
14. Richardson, J. K., Oleszkiewicz I., “Fire tests on window assemblies protected by automatic sprinkles,” Fire Technology, Vol. 23, p. 115, 1987.
15. Wu, C. W., Lin, T. H., “Fire resistance tests of glass pane with down-flowing water film,” Technical Report, Taiwan, ROC: Safety Technology Co., Ltd., 2005.
16. Chen, H. T., Lee, S. K., “Estimation of heat transfer characteristics on the hot surface of glass pane with down-flowing water film,” Building and Environment, Vol. 45, p. 2089, 2010.
17. Burggraf, O. R., “An exact solution of the inverse problem in heat conduction theory and applications”, J. Heat Transfer, Vol. 86, p. 373, 1964.
18. Chantasiriwan, S., “Inverse heat conduction problem of determining time-dependent heat transfer coefficient,” Int. J. Heat Mass Transfer, Vol. 42, p. 4275, 1999.
19. Ijaz, U. Z., Khambampati, A. K., Kim, M. C., Kim, Sim., Kim K. Y., “Estimation of time-dependent heat flux and measurement bias in two dimensional inverse heat conduction problems,” J. Heat Mass Transfer, Vol. 50, p. 4117, 2007.
20. Park, H. M., Jung, W. S., “On the solution of multidimensional inverse heat conduction problems using an efficient sequential method,” J. Heat Transfer, Vol. 123, p. 1021, 2001.
21. Lee, H. L., Lai, T. H., Chen, W. L., Yang, Y. C., “An inverse heat hyperbolic conduction problem in estimating surface heat flux of a living skin tissue.” Applied Mathematical Modelling, Vol. 37, p. 2630, 2013.
22. Chen, T. C., Liu, C. C., “Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour,” J. Heat Mass Transfer, Vol. 51, p. 3571, 2008.
23. Lin, D. T. W., Yang, C. Y., Li, J. C., Wang, C. C., “Inverse estimation of the unknown heat flux boundary with irregular shape fins,” J. Heat and Mass Transfer, Vol. 54, p. 5275, 2011.
24. Malinowski, Z., Telejko, T., Hadala, B., Cebo-Rudnicka, A., Szajding, A., “Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water,” J. Heat Mass Transfer, Vol. 75, p. 347, 2014.
25. Bozzoli, F., Cattani, L., Rainieri, S., Pagliarini, G., “Estimation of local heat transfer coefficient in coiled tubes under inverse heat conduction problem approach,” Experimental Thermal and Fluid Science, Article in Press, 2013.
26. Berntsson, F., Elden, L., “An inverse heat conduction problem and an application to heat treatment of aluminum,” International Symposium on Inverse Problems in Engineering Mechanics, p. 99, 2000.
27. Tikhe, A. K., Deshmuhk, K. C., “Inverse heat conduction problem in a thin circular plate and its thermal deflection,” Applied Mathematical Modelling, Vol. 30, p. 554, 2006.
28. Kurpisz, K., Nowak, A. J., “Inverse thermal problems,” Computational Mechanics Publication, Southampton, 1995.
29. Stolz, G. Jr., “Numerical solutions to an inverse problem of heat conduction for simple shapes,” J. Heat Transfer, Vol. 82, p. 20, 1960.
30. Beck, J. V., “Surface heat flux determination using an integral method,” J. Nuclear Engineering and Design, Vol. 7, p. 170, 1968.
31. Zabaras, Nicholas., Liu, Joshua, C., “An analysis of two dimensional linear inverse heat transfer problems using integral method,” Numerical Heat Transfer, Vol. 13, p. 527, 1988.
32. Bass, B. R., “Application of the finite element method to the nonlinear inverse heat conduction problem using Beck’s second method,” Engineering of Industry, Vol. 102, p. 168, 1990
33. Beck, J. V., “Calculation of surface heat flux from an internal temperature history,” ASME paper, 62-HT-46.
34. Tikhonov, A. N., Arsenin, V. Y., “Solutions of ill posed problems,” V. H. Winston& Sons, Washington, D. C., 1977.
35. Beck, J.V., Murio, Diego, A., “Combined function specification-regularization procedure for solution of inverse heat conduction problem,” AIAA 22nd Aerospace Sciences Meeting, Vol. 24, p. 180, 1984.
36. Chen, H. T., Chen, T. M., Chen, C. K., “Hybrid Laplace transform or finite element method for one-dimensional transient heat conduction problems,” Computer methods in applied mechanics and engineering, Vol. 63, p. 83, 1987.
37. Beck, J.V., Blackwell, B., and St. Clair, C.R., “Inverse Heat Conduction: Ill Posed Problem,” Wiley Intersc., New York, 1985.
38. Özisik, M. N., “Heat conduction 2nd ed,” Wiley, New York, 1993 [Chapter14].
39. Chen, H. T., Chang, S. M., “Application of the hybrid method to inverse heat conduction problems,” J. Heat Mass Transfer, Vol. 33, p. 621, 1990.
40. Chen, H. T., Lin, S. Y., Fang, L. C., “Estimation of surface temperature in two-dimensional inverse heat conduction problems,” Vol. 44, p. 145, 2000.
41. Chen, H. T., Lin, S. Y., Fang, L. C., “Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems,” Vol. 45, p. 15, 2001.
42. Chen, H. T., Wu, X. Y., “Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme,” Numer. Meth. Eng., Vol. 73, p. 107, 2008.
43. CNS 14815, “Method of Fire Resistance Test for Fire Fixed Window of Buildings,” Chinese National Standards, Taiwan, ROC, 2004.
44. Chen, H. T., Chang, S. M., “Numerical simulation for conjugate problem of numerical convection on both sides of a vertical wall,” J. Heat Mass Transfer, Vol. 39, p. 383, 1996.
45. Ismail, KAR., Henriquez, JR., “Modelling and simulation of a simple glass window,” Solar Energy Material Solar Cells, Vol. 80, p. 355, 2003.
校內:2019-07-17公開