| 研究生: |
謝嘉芸 Hsieh, Chia-Yun |
|---|---|
| 論文名稱: |
探討冷誘導核醣核酸結合蛋白在低溫對抗MPP+毒性的神經保護作用中所扮演之角色 The role of cold-inducible RNA binding protein in the neuroprotection of hypothermia against MPP+ toxicity |
| 指導教授: |
莊季瑛
Chuang, Jih-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 低溫 、CIRBP 、Nrf2 、MPP+ 、神經保護 |
| 外文關鍵詞: | hypothermia, CIRBP, Nrf2, MPP+, neuroprotection |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低溫治療目前已經被認為是一個具有潛力去阻止廣泛腦損傷的治療方式。我們之前的研究以人類神經母細胞瘤細胞株 (SK-N-SH cell line) 在低溫 (32C) 處理後發現,細胞株會大量的表達冷所誘導的核糖核酸結合蛋白(cold-inducible RNA binding protein, CIRBP),這個大量表達的蛋白在低溫下所扮演的功能,目前為止還不是很清楚。因此,我們想要探討冷誘導核糖核酸結合蛋白在低溫對抗MPP+毒性的神經保護作用當中所扮演的角色。MPP+是一個粒線體中呼吸鏈上複合體I (complex I) 的抑制劑,此藥物可以廣泛且選擇性的造成多巴胺神經的死亡,因此是一種常被用來模擬帕金森氏症的藥物。首先,我們發現SK-N-SH 細胞株暴露在低溫下24 h 可以顯著的降低內源性及MPP+所誘導H2O2產生,接著,低溫可以顯著降低細胞死亡率以及增加細胞的存活率。文獻已指出,轉錄因子-Nrf2,可以被氧化壓力活化,並促進下游抗氧化酵素的轉錄,包含-穀氨醯半胱氨酸合成酶 (-GCS)、第一型血紅素氧化酶 (HO-1) 及NAD(P)H對苯二酮脫氫酶 (NQO1),進而去抑制氧化壓力,達到細胞保護的作用。我們探討Nrf2抗氧化系統是否涉及低溫誘導保護作用機制,在低溫暴露下,依序會提高下列mRNA分子或蛋白的表現:1 h下,細胞核中Nrf2蛋白及HO-1 mRNA表現; 6 h, -GCSc 蛋白及 HO-1 mRNA表現; 12 h, HO-1 mRNA表現; 12 h-48 h, RBM3 mRNA表現; 24 h會提高 -GCSc蛋白表現; 24-48 h會提高CIRBP mRNA表現。低溫處理也抑制MPP+所誘導CIRBP、 -GCSc及RBM3 (another cold-inducible protein) mRNA下降以及HO-1及NQO-1 mRNA上升。低溫還可以避免MPP+誘導ARE啟動子活性下降。接著,我們分別將pEGFP-N1融合蛋白及pLKO.AS3w.puro vectors 插入一段人類全長cirbp 基因去大量表達CIRBP。我們發現轉染cirbp-EGFP 融合蛋白質體或共同轉染 cirbp/puromycin plasmid 以及 ARE-pGL3 plasmid,顯著降低MPP+誘導細胞死亡,然而單獨轉染cirbp/puromycin plasmid卻沒有保護作用,並且會誘發H2O2含量增高。另外,大量表達CIRBP在MPP+誘導Nrf2所調控抗氧化酵素的改變以及對神經細胞的保護作用中,並沒有像低溫處理一樣明顯。我們繼續探討這樣不同的結果是否是因為CIRBP表達在細胞中不同位置所造成的影響。利用免疫螢光染色及表達cirbp-EGFP 融合蛋白的實驗中,我們發現不管細胞處於低溫或大量表達CIRBP或MPP+處理之下,都可以看到細胞核的CIRBP表現量高於細胞質。這樣的結果暗示,CIRBP在低溫誘導的神經保護作用機制當中,只扮演了部分的角色。
Hypothermia has a promising therapeutic advantage in the prevention of a broad range of brain damages. Our preliminary results showed that human SK-N-SH neuroblastoma cells cultured in cold condition (32C) significantly upregulated the cold-inducible RNA binding protein (CIRBP) expression. However, the function of CIRBP upregulation under cold exposure is unclear. Herein, we investigated the role of CIRBP in cold exposure-induced neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) toxicity. MPP+ is an inhibitor of mitochondrial complex I and widely used to selectively induced dopaminergic neuron death as a model of Parkinson’s disease. Firstly, we found that cold exposure for 24 h significantly reduced endogenous and MPP+-induced H2O2 production, and subsequently prevented neuron death 48 h after MPP+ treatment. Because it has been reported that transcription factor of nuclear factor erythroid 2-related factor 2 (Nrf2) is activated by oxidative stress and up-regulates the downstream antioxidant enzymes, including -glutamylcysteine synthetase (-GCS), NAD(P)H dehydrogenase quinone 1 (NQO-1), and heme oxygenase-1 (HO-1) to protect cells from oxidative insult, we investigated the involvement of Nrf2 antioxidant system in cold exposure-induced neuroprotection. Results from time-course study revealed that cold exposure induced upregulation of nuclear Nrf2 protein and HO-1 mRNA (1 h), -GCS protein and HO-1 mRNA (6 h), HO-1 (12 h) and RBM3 (12-48 h) mRNA, and -GCS protein (24 h) and CIRBP mRNA and protein (24-48 h) expression. Cold exposure prevented MPP+-induced downregulation of CIRBP and-GCS and RNA binding motif 3 (RBM3, another cold-inducible protein), as well as upregulation of HO-1 and NQO-1 mRNA expression. Cold exposure can block MPP+-induced decrease in ARE promoter activity. CIRBP overexpression using cirbp-EGFP fusion protein plasmid or cotransfection cirbp/puromycin plasmid with ARE-pGL3 plasmid, but not transfection of cirbp/puromycin plasmid only, significantly reduced MPP+-induced neuron death, though a significant increase in H2O2 level was found. However, the effect of CIRBP overexpression on MPP+-induced changes in the expression of Nrf2-regulated antioxidant enzymes and its neuroprotective effect was less pronounced than that under cold exposure. We considered and examined whether the disparity was caused by the different distribution of CIRBP in cells. Results from immunocytochemistry and overexpression of cirbp-EGFP fusion protein studies showed that higher CIRBP expression was found in the nucleus than in the cytosol after MPP+ treatment and also in both cold exposure and CIRBP overexpression. These results imply that CIRBP plays partial role in cold exposure-induced neuroprotection.
References
1 Steece-Collier, K., Maries, E. & Kordower, J. H. Etiology of Parkinson's disease: Genetics and environment revisited. Proceedings of the National Academy of Sciences of the United States of America 99, 13972-13974, doi:10.1073/pnas.242594999 (2002).
2 Lee, H. J., Bae, E. J. & Lee, S. J. Extracellular alpha--synuclein-a novel and crucial factor in Lewy body diseases. Nature reviews. Neurology 10, 92-98, doi:10.1038/nrneurol.2013.275 (2014).
3 Vekrellis, K., Xilouri, M., Emmanouilidou, E., Rideout, H. J. & Stefanis, L. Pathological roles of alpha-synuclein in neurological disorders. The Lancet. Neurology 10, 1015-1025, doi:10.1016/s1474-4422(11)70213-7 (2011).
4 Fitzmaurice, P. S. et al. Nigral glutathione deficiency is not specific for idiopathic Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 18, 969-976, doi:10.1002/mds.10486 (2003).
5 Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. Journal of neurochemistry 54, 823-827 (1990).
6 Javitch, J. A., D'Amato, R. J., Strittmatter, S. M. & Snyder, S. H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proceedings of the National Academy of Sciences of the United States of America 82, 2173-2177 (1985).
7 Cui, M. et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proceedings of the National Academy of Sciences of the United States of America 106, 8043-8048, doi:10.1073/pnas.0900358106 (2009).
8 Blesa, J., Phani, S., Jackson-Lewis, V. & Przedborski, S. Classic and new animal models of Parkinson's disease. Journal of biomedicine & biotechnology 2012, 845618, doi:10.1155/2012/845618 (2012).
9 Kopin, I. J. & Markey, S. P. MPTP toxicity: implications for research in Parkinson's disease. Annual review of neuroscience 11, 81-96, doi:10.1146/annurev.ne.11.030188.000501 (1988).
10 Thimmulappa RK et al. Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid Redox Signal 9(11), 1963-1970 (2007).
11 Sharma, R. et al. Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. Free radical biology & medicine 52, 2177-2185, doi:10.1016/j.freeradbiomed.2012.04.012 (2012).
12 Zhang, D. D. & Hannink, M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Molecular and cellular biology 23, 8137-8151 (2003).
13 Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. American journal of physiology. Renal physiology 298, F662-671, doi:10.1152/ajprenal.00421.2009 (2010).
14 Ishii, T. et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. The Journal of biological chemistry 275, 16023-16029 (2000).
15 Clark, J. & Simon, D. K. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxidants & redox signaling 11, 509-528, doi:10.1089/ars.2008.2241 (2009).
16 van Muiswinkel, F. L. et al. Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiology of aging 25, 1253-1262, doi:10.1016/j.neurobiolaging.2003.12.010 (2004).
17 Schipper, H. M. Heme oxygenase expression in human central nervous system disorders. Free radical biology & medicine 37, 1995-2011, doi:10.1016/j.freeradbiomed.2004.09.015 (2004).
18 Jakel, R. J., Townsend, J. A., Kraft, A. D. & Johnson, J. A. Nrf2-mediated protection against 6-hydroxydopamine. Brain research 1144, 192-201, doi:10.1016/j.brainres.2007.01.131 (2007).
19 Chen, P. C. et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical role for the astrocyte. Proceedings of the National Academy of Sciences of the United States of America 106, 2933-2938, doi:10.1073/pnas.0813361106 (2009).
20 Xu, L., Yenari, M. A., Steinberg, G. K. & Giffard, R. G. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 22, 21-28, doi:10.1097/00004647-200201000-00003 (2002).
21 Polderman, K. H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 371, 1955-1969, doi:10.1016/s0140-6736(08)60837-5 (2008).
22 Holzer, M. Targeted temperature management for comatose survivors of cardiac arrest. The New England journal of medicine 363, 1256-1264, doi:10.1056/NEJMct1002402 (2010).
23 Yenari, M., Kitagawa, K., Lyden, P. & Perez-Pinzon, M. Metabolic downregulation: a key to successful neuroprotection? Stroke; a journal of cerebral circulation 39, 2910-2917, doi:10.1161/strokeaha.108.514471 (2008).
24 Tissier, R. et al. Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation 84, 249-255, doi:10.1016/j.resuscitation.2012.06.030 (2013).
25 Yenari, M. A. & Han, H. S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature reviews. Neuroscience 13, 267-278, doi:10.1038/nrn3174 (2012).
26 Deng, H., Han, H. S., Cheng, D., Sun, G. H. & Yenari, M. A. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke; a journal of cerebral circulation 34, 2495-2501, doi:10.1161/01.str.0000091269.67384.e7 (2003).
27 Xiong, M., Yang, Y., Chen, G. Q. & Zhou, W. H. Post-ischemic hypothermia for 24h in P7 rats rescues hippocampal neuron: association with decreased astrocyte activation and inflammatory cytokine expression. Brain research bulletin 79, 351-357, doi:10.1016/j.brainresbull.2009.03.011 (2009).
28 Feng, J. F. et al. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury in rats. Neurosurgery 67, 730-742, doi:10.1227/01.neu.0000378023.81727.6e (2010).
29 Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 137, 899-908 (1997).
30 Yu, X. X. et al. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14, 1611-1618 (2000).
31 Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B. & Stoecklin, G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Molecular biology of the cell 23, 3786-3800, doi:10.1091/mbc.E12-04-0296 (2012).
32 Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. The Journal of cell biology 137, 899-908 (1997).
33 Derry, J. M., Kerns, J. A. & Francke, U. RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Human molecular genetics 4, 2307-2311 (1995).
34 Tong, G. et al. Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain research 1504, 74-84, doi:10.1016/j.brainres.2013.01.041 (2013).
35 Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nature reviews. Molecular cell biology 8, 479-490, doi:10.1038/nrm2178 (2007).
36 Yang, R., Weber, D. J. & Carrier, F. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic acids research 34, 1224-1236, doi:10.1093/nar/gkj519 (2006).
37 De Leeuw, F. et al. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Experimental cell research 313, 4130-4144, doi:10.1016/j.yexcr.2007.09.017 (2007).
38 Wilusz, J., Feig, D. I. & Shenk, T. The C proteins of heterogeneous nuclear ribonucleoprotein complexes interact with RNA sequences downstream of polyadenylation cleavage sites. Molecular and cellular biology 8, 4477-4483 (1988).
39 Al-Fageeh, M. B. & Smales, C. M. Cold-inducible RNA binding protein (CIRP) expression is modulated by alternative mRNAs. RNA (New York, N.Y.) 15, 1164-1176, doi:10.1261/rna.1179109 (2009).
40 Sumitomo, Y. et al. Identification of a novel enhancer that binds Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression in mammalian cells. BMC biotechnology 12, 72, doi:10.1186/1472-6750-12-72 (2012).
41 Li, S., Zhang, Z., Xue, J., Liu, A. & Zhang, H. Cold-inducible RNA binding protein inhibits H(2)O(2)-induced apoptosis in rat cortical neurons. Brain research 1441, 47-52, doi:10.1016/j.brainres.2011.12.053 (2012).
42 Saito, K. et al. Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain research 1358, 20-29, doi:10.1016/j.brainres.2010.08.048 (2010).
43 Brochu, C. et al. NF-kappaB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1beta. PloS one 8, e57426, doi:10.1371/journal.pone.0057426 (2013).
44 Zhou, M., Yang, W. L., Ji, Y., Qiang, X. & Wang, P. Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochimica et biophysica acta 1840, 2253-2261, doi:10.1016/j.bbagen.2014.02.027 (2014).
45 Qiang, X. et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature medicine 19, 1489-1495, doi:10.1038/nm.3368 (2013).
46 Matsui, T., Yoshida, Y., Yanagihara, M. & Suenaga, H. Hypothermia at 35 degrees C reduces the time-dependent microglial production of pro-inflammatory and anti-inflammatory factors that mediate neuronal cell death. Neurocritical care 20, 301-310, doi:10.1007/s12028-013-9911-5 (2014).
47 Kiyatkin, E. A. Brain temperature homeostasis: physiological fluctuations and pathological shifts. Frontiers in bioscience (Landmark edition) 15, 73-92 (2010).
48 Rango, M., Arighi, A., Bonifati, C. & Bresolin, N. Increased brain temperature in Parkinson’s disease. NeuroReport 23, 129-133, doi:10.1097/WNR.0b013e32834e8fac (2012).
49 Ye, Q., Zhang, X., Huang, B., Zhu, Y. & Chen, X. Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Marine drugs 11, 1019-1034, doi:10.3390/md11041019 (2013).
50 Yang, C. & Carrier, F. The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. The Journal of biological chemistry 276, 47277-47284, doi:10.1074/jbc.M105396200 (2001).
51 Xu, Z. et al. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells. Neurotoxicology 26, 729-737, doi:10.1016/j.neuro.2004.12.008 (2005).
52 Aoki, K., Ishii, Y., Matsumoto, K. & Tsujimoto, M. Methylation of Xenopus CIRP2 regulates its arginine- and glycine-rich region-mediated nucleocytoplasmic distribution. Nucleic acids research 30, 5182-5192 (2002).
53 Tsou, Y. H. et al. Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP(+) toxicity. Experimental neurology 263, 50-62, doi:10.1016/j.expneurol.2014.09.021 (2015).
54 Alam, J. & Cook, J. L. How many transcription factors does it take to turn on the heme oxygenase-1 gene? American journal of respiratory cell and molecular biology 36, 166-174, doi:10.1165/rcmb.2006-0340TR (2007).
55 Cherry, A. D. & Piantadosi, C. A. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxidants & redox signaling, doi:10.1089/ars.2014.6200 (2015).
56 Stocker, R. & Perrella, M. A. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation 114, 2178-2189, doi:10.1161/circulationaha.105.598698 (2006).
57 Schipper, H. M., Liberman, A. & Stopa, E. G. Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Experimental neurology 150, 60-68, doi:10.1006/exnr.1997.6752 (1998).
58 Jaiswal, A. K. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free radical biology & medicine 29, 254-262 (2000).
59 Tobon-Velasco, J. C. et al. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-kappaB factors. Toxicology 304, 109-119, doi:10.1016/j.tox.2012.12.011 (2013).