簡易檢索 / 詳目顯示

研究生: 宋柏豪
Song, Bo-Hao
論文名稱: 利用具有共軸雙焦距透鏡單元之液晶透鏡陣列改善積分成像系統之景深能力
Using a liquid crystal lens array composed of coaxially bifocal lens units to improve capabilities of viewing depth in the integral imaging system
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 液晶透鏡陣列共軸雙焦距積分成像系統景深
外文關鍵詞: coaxially bifocal, LC lens array, integral imaging system, depth of field
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究是利用聚合物曝光法製作共軸雙焦液晶透鏡陣列,並將所製作之元件應用在積分成像系統(Integral imaging system)中以改善立體影像之景深能力。在本研究中透過額外製作之介電層與不對稱水平液晶配向製作液晶透鏡陣列,其性能表現具有無不連續線產生、短焦、低操作電壓及較佳的干涉條紋等特徵。製程中添加光聚合物於液晶盒中,並施以光罩曝光使液晶透鏡單元之外圈區域之液晶分子具固定方向分佈而產生一固定焦距,而液晶透鏡單元之內圈區域之液晶分子可以隨電壓操作產生可調變焦距,如此,完成共軸雙焦距之液晶透鏡陣列製作。
    在共軸雙焦液晶透鏡陣列應用於積分成像系統之研究中,是藉由模擬軟體產生包含空間中不同位置的兩物體訊息之影像單元,分別以一般液晶透鏡陣列與具共軸雙焦特性之液晶透鏡陣列重建其立體影像,比較其兩者不同的重建影像結果,可得到共軸雙焦液晶透鏡陣列具有較一般液晶透鏡陣列約2.4倍之景深範圍,驗證了本研究之透過聚合物曝光法達成之共軸雙焦液晶透鏡具有提升在積分成像系統中重建立體影像的景深範圍能力之目的。

    In this study, a tunable coaxially bifocal liquid crystal (CBLC) lens array is investigated and demonstrated via photo-polymerization processes. Due to specifics of electrically tuning bi-focuses in the CBLC lens array, it will provide two central depth planes to improve depth of field (DoF) in the integral imaging (InIm) system. In this study, significant enhancements of DoF have been demonstrated and confirmed by means of the fabricated CBLC lens array in the InIm system. As a result, an optimal enhancement of DoF is 6 cm, which is 2.4 times lengths than that by means of a single focus LC lens array.

    目錄 目錄 摘要 I Abstract II 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 第二章 液晶簡介與實驗原理 8 2-1 液晶基本特性 8 2-1-1 液晶材料 8 2-1-2 液晶配向處理 9 2-1-3 液晶光學特性 10 2-2 液晶透鏡原理 12 2-2-1 圓孔型圖樣電極液晶透鏡的原理 12 2-2-2 圓孔型圖樣電極液晶透鏡之干涉條紋與焦距 14 2-2-3 圓孔型圖樣電極液晶透鏡之不連續線 17 2-3 光聚合物穩定法 18 2-4 立體顯示與積分成像系統原理 20 2-4-1 常見的立體顯示器與原理 20 2-4-2 積分成像系統原理 22 2-4-3 積分成像系統之景深探討 25 第三章 實驗裝置與材料 28 3-1 樣品製作材料與設備 28 3-1-1 實驗材料 28 3-1-2 實驗設備 30 3-2 樣品製作流程 31 3-2-1 圓孔陣列圖樣電極製作 31 3-2-2 塗佈介電層 32 3-2-3 基板之配向 32 3-2-4 調配聚合物液晶溶液 33 3-2-5 組裝液晶透鏡陣列 33 3-3 共軸雙焦液晶透鏡陣列製程 34 3-3-1 共軸雙焦液晶透鏡陣列結構 34 3-3-2 共軸雙焦液晶透鏡陣列之曝光製程 38 3-4 實驗裝置與量測 41 3-4-1 液晶透鏡陣列之干涉條紋量測 41 3-4-2 液晶透鏡陣列之焦距量測 42 3-4-3 積分成像系統拍攝 43 第四章 實驗結果與討論 45 4-1 軸雙焦液晶透鏡陣列之特性量測 45 4-1-1 共軸雙焦液晶透鏡陣列成像 45 4-1-2 干涉條紋與焦距之量測 46 4-2 積分成像系統拍攝與景深探討 49 4-2-1 共軸雙焦液晶透鏡陣列單焦之立體影像 49 4-2-2 共軸雙焦液晶透鏡陣列雙焦之立體影像 55 4-2-3 共軸雙焦與一般液晶透鏡陣列之景深比較 58 4-2-4 透過理論公式與觀測結果做比較 60 第五章 結論與未來展望 63 5-1 結論 63 5-2 未來展望 64 參考文獻 65

    參考文獻
    [1] J. Kim, Y. Kim, J. Hong, G. Park, K. Hong, S.-W. Min, and B. Lee, “A full-color anaglyph three-dimensional display system using active color filter glasses,” J. Inf. Disp. 12(1), 37–41 (2011).
    [2] A. Kaan, A. H. G. Niaki, O. Eldes, and H. Urey, “Super stereoscopy 3D glasses for more realistic 3D vision,” 3Dtv-con. (IEEE), 1–3 (2014).
    [3] K. Akşit, A. H. G. Niaki, E. Ulusoy, and H. Urey, “Super stereoscopy technique for comfortable and realistic 3D displays,” Opt. Lett. 39, 6903–6906 (2014).
    [4] I. Gramatikov, K. Simons, D. Guyton, B. Gramatikov, “A PC-based shutter glasses controller for visual stimulation using multithreading in LabWindows/CVI,” Computer Methods and Programs in Biomedicine, 143,151–158 (2017).
    [5] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
    [6] Q.H. Wang, A.H. Wang, W.X. Zhao, Y.H. Tao, D.H. Li, “Autostereoscopic display based on multi-layer lenticular lens,” Optik, 122 (15), 1326-1328 (2011).
    [7] B. S. Kim, S. C. Lee, K. W. Kim, and W. S. Park, “Three-Dimensional Analysis of the Autostereoscopic Display with an Array of Lenticulars, ” Mol. Cryst. Liq. Cryst., 612,46–55 (2015).
    [8] J.-Y. Luo, Q.-H. Wang, W.-X. Zhao, and D.-H. Li, “Autostereoscopic three-dimensional display based on two parallax barriers,” Appl. Opt. 50(18), 2911–2915 (2011).
    [9] G. J. Lv, W. X. Zhao, D. H. Li, and Q. H. Wang, “Polarizer parallax barrier 3D display with high brightness, resolution, and low crosstalk,” J. Disp. Technol. 10, 120–124 (2014).
    [10] S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
    [11] T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
    [12] H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
    [13] H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
    [14] J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
    [15] E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intel. 14, 99–106 (1992).
    [16] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (2005).
    [17] H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).
    [18] J. Hong, S.-W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51, 4201–4209 (2012).
    [19] G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009).
    [20] J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt. 50, B71–B76 (2011).
    [21] Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
    [22] J. Kim, C.-K. Lee, Y. Jeong, C. Jang, J.-Y. Hong, W. Lee, Y.-C. Shin, J.-H. Yoon, and B. Lee, “Crosstalk-reduced dual-mode mobile 3D display,” Journal of D. Technology 11(1), 97–103 (2015).
    [23] C. G. Luo, C. C. Ji, F. N. Wang, Y. Z. Wang, and Q. H. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8, 634–638 (2012).
    [24] X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [25] Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
    [26] H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
    [27] C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [28] 松本正一‧角田市良合著, "液晶之基礎與應用," 國立編譯館, 中華民國九十四年八月
    [29] 游琮宏, “控制混合矽烷鍍膜於玻璃表面產生可調變預傾角的液晶盒之研究”, 國立成功大學光電科學與工程研究所碩士論文,中華民國九十六年七月.
    [30] T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
    [31] J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
    [32] Mouquinho A, Petrova K, Barros M T, and Sotomayor J. New Polymer Networks for PDLC Films Application, New Polymers for Special Applications, Chapter 5: 139-164. (2012)
    [33] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [34] J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023-13034 (2007).
    [35] S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71-L74 (2005).
    [36] C.-G. Luo, X. Xiao, M. Martínez-Corral, C.-W. Chen, B. Javidi, and Q.-H. Wang, “Analysis of the depth of field of integral imaging displays based on wave optics,” Opt. Express 21, 31263–31273 (2013).
    [37] C. G. Luo, Q. H. Wang, H. Deng, X. X. Gong, L. Li, and F. N. Wang, “Depth calculation method of integral imaging based on Gaussian beam distribution model,” J. Disp. Technol. 8(2), 112–116 (2012).
    [38] J.-L. Zhu, S.-B. Ni, Y. Song, E.-W. Zhong, Y.-J. Wang, C. P. Chen, Z. Ye, G. He, D.-Q. Wu, X.-L. Song, J.-G. Lu, and Y. Su, “Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent,” Appl. Phys. Lett. 102(7), 071104 (2013).
    [39] 張延任, “以額外介電層與非對稱水平配向法製作無不連續線之液晶透鏡陣列暨其應用於積分成像系統研究”, 國立成功大學光電科學與工程研究所碩士論文, 中華民國一百零五年七月.
    [40] M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
    [41] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo, and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt. 51(19), 4269–4274 (2012).
    [42] S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
    [43] S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1482–1488 (2002).
    [44] 景深計算器, http://dofsimulator.net/en/ .

    無法下載圖示 校內:2022-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE