簡易檢索 / 詳目顯示

研究生: 莊浩宇
Chuang, Haw-Yeu
論文名稱: 二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究
Preparation and applications of TiO2 nanoparticles and metal-TiO2 core-shell nanocomposites
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 204
中文關鍵詞: 核殼型金屬二氧化鈦奈米複合材料
外文關鍵詞: TiO2, nanocomposite, metal, core-shell
相關次數: 點閱:131下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關二氧化鈦奈米粒子及其金屬核殼型奈米複合材料的製備與光電化學性質的應用研究,主要是利用改善後之溶膠凝膠法來合成二氧化鈦奈米粒子,並將其與銀或鎳銀合金之奈米金屬結合,形成以奈米金屬為內核、二氧化鈦完整包覆於外表的核殼型奈米複合材料,探討合成條件對於粒徑、結構、光學、表面特性等性質的影響,以及其於紫外光遮蔽、光觸媒催化、光電化學反應、光電效應機制等應用的分析探討。內容含括三個系統:於無酸、無鹼、無催化劑、無保護劑的環境下低溫合成能於800 oC高溫以上仍維持純銳鈦礦結構之二氧化鈦奈米粒子;Ag@TiO2以及NiAg@TiO2核殼型奈米複合材料之製備與其可見光光觸媒催化特性;Ag@TiO2薄膜光電極的製備與其光電化學電池性質的分析與研究。
    低溫合成能於800 oC高溫以上仍維持純銳鈦礦結構之二氧化鈦奈米粒子,此為一種新穎而簡單的合成技術,係以水與乙二醇的混合溶液作為主要反應系統,於不添加酸、鹼、催化劑、保護劑的前提下,改變水與乙二醇的混合比例,先將醇氧鈦前驅鹽進行水解反應,再控制二階段低溫熱處理的溫度與時間,進行脫水脫醇的聚縮合反應,合成出純銳鈦礦結構之二氧化鈦奈米粒子。結果發現,隨著水的比例增加,則晶相結構較佳,粒徑也隨之增大;當水的比例小於5 vol.%時,則呈現非晶相結構。隨著前驅鹽濃度提升,粒徑也隨之增大;但改變低溫熱處理的溫度與時間,則對粒徑沒有顯著影響。所得之二氧化鈦奈米粒子具有優良的分散性,當水的比例為50 vol.%、二階段熱處理的溫度與時間為先103 oC-6 h接著120 oC-6 h時,所得二氧化鈦奈米粒子之粒徑為4.97 ± 0.9 nm,BET比表面積達393 m2/g,具有良好的純銳鈦礦結構,可以完全吸收遮蔽320 nm以下之紫外光,與市面上常用的P25二氧化鈦奈米材料相比,又能保持優秀的可見光穿透度,即使鍛燒到800 oC以上之高溫,仍可維持純銳鈦礦的晶相結構,非常適合應用於染料敏化光電化學電池的基礎材料以及需要遮蔽紫外光且穿透可見光的薄膜或鍍膜材料。
    關於Ag@TiO2、NiAg@TiO2核殼型奈米複合材料之製備與其可見光光觸媒催化特性的研究,對於二氧化鈦奈米光電材料而言,此為一種創新的奈米結構。首先於水相CTAB系統中,以硝酸銀與硝酸鎳為前驅鹽,聯胺為還原劑,介面活性劑CTAB為保護劑,藉化學還原法合成出純銀與鎳銀合金的奈米金屬,再將醇氧鈦前驅鹽之酒精溶液與奈米金屬溶液混合反應,使二氧化鈦完整被覆於奈米金屬表面,合成出能良好分散於水溶液中的Ag@TiO2與NiAg@TiO2核殼型奈米複合材料。經由各項分析佐證發現所得之Ag@TiO2與NiAg@TiO2為確實完整包覆的核殼型奈米結構,其粒徑分別為11.91 ± 2.31與13.49 ± 2.58 nm,二氧化鈦外層的厚度分別約為5.06 與5.64 nm,BET比表面積分別為117.82和 108.31 m2/g,即使經過二氧化鈦被覆,內部的奈米金屬仍沒有被氧化的情況發生。完整的二氧化鈦包覆可以有效保護內部的奈米金屬不受外在環境的侵蝕和反應,使其能兼具奈米金屬與二氧化鈦奈米光電材料的特性,並有效延長材料的使用壽命。銀奈米粒子本身具有表面電漿共振的特性,能夠吸收可見光激發電子電洞,而且純金屬和二氧化鈦N型半導體接觸後,會於介面形成蕭特基能階彎曲之現象,因此Ag@TiO2奈米複合材料可有效的將光電反應從紫外光延伸至可見光區域,僅僅吸收可見光的能量即可激發電子電洞對進行光觸媒催化作用或光電化學反應。由於鎳本身具有磁性,鎳銀合金能兼具磁性控制與可見光應答的性質,因此NiAg@TiO2奈米複合材料不僅能夠展現可見光光觸媒的催化特質,更能夠利用磁性控制來回收粉體以便於再次使用。從光觸媒的分析結果發現,Ag@TiO2和NiAg@TiO2核殼型奈米複合材料在可見光的照射下具有非常優秀的光催化性質,對於玫瑰紅染料之分解效率分別是純二氧化鈦奈米粒子的2.51和2.12倍。
    關於Ag@TiO2核殼型奈米材料之光電極的製備與其光電化學電池性質的分析與研究,主要是將上面所製備的Ag@TiO2奈米複合材料被覆於ITO導電玻璃上,經由Ag@TiO2奈米粒子的堆疊形成多孔性的薄膜,製作出可進行光電化學電池反應之工作電極。經由相關分析發現,此光電極膜厚約為2 μm,即使經過400 oC的鍛燒,內部奈米銀金屬仍無被氧化的現象發生,對於370 ~ 730 nm之可見光具有強大的吸收能力。由光電化學電池的實驗結果可以發現,在可見光的照射下,Ag@TiO2薄膜工作電極所產生的光電流比純TiO2薄膜工作電極高了約68倍;即使在紫外光的照射下,Ag@TiO2薄膜工作電極所產生的光電流仍比純TiO2薄膜工作電極高了約8.33倍,可應用於無機型的光電化學電池。除此之外, Ag@TiO2工作電極於鹼性的電解液中,可以利用不同光源照射而造成不同方向的光電流,照射紫外光時引發正向的光電流,照射可見光則產生負向的光電流,此特殊效應可應用於光感測、光電開關等用途。

    This dissertation concerns the preparation of TiO2 nanoparticles and metal-TiO2 core-shell type nanocomposites, and their photocatalytic and photoelectrochemical applications. TiO2 nanoparticles were prepared though sol-gel process, coating on Ag or NiAg alloy nanoparticles, and the core-shell type Ag@TiO2 or NiAg@TiO2 nanocomposites were fabricated. The effects of preparation conditions on the particle size, structure, optical and surface state properties were investigated. The applications in UV-cut materials, photocatalysts and photoelectrochemical cells were also discussed. Three systems were studied, including “Catalyst-free low temperature synthesis of discrete anatase titanium dioxide nanocrystals with highly thermal stability and UVC-cut capability”, “Fabrication and photocatalytic activities of Ag@TiO2 and NiAg@TiO2 nanoparticles”, and “Visible light induced photoelectrochemical properties of Ag@TiO2 nanoparticle thin film as a novel photoelectrode”.
    A novel, facile, catalyst-free and low temperature process for the synthesis of discrete anatase TiO2 nanocrystals has been developed in the absence of stabilizing agent. By varying the water content and precursor concentration, the particle size could be tuned. Also, the resultant colloid solution was quite stable even in the absence of stabilizing agent because of the coverage of EG molecules on the particle surface. The product was shown to be discrete anatase TiO2 nanocrystals with a mean diameter of 4.97 ± 0.9 nm and a specific surface area of 393 m2/g. Also, as compared to Degussa P25 TiO2 powders, they exhibited stronger absorption at 200 ~ 350 nm and higher transmittance in the visible light region. In addition, the anatase TiO2 nanocrystals obtained in this work had highly thermal stability even at temperatures up to 800 oC. The new approach proposed in this work was practicable for the synthesis of anatase TiO2 nanocrystals, particularly for those requested to have highly thermal stability and UVC-cut capability.
    Completely discrete Ag@TiO2 and NiAg@TiO2 core-shell type nanocomposites were prepared by the hydrazine reduction of Ag+/Ni2+ ions and the followed sol-gel coating of TiO2 in the aqueous solution of CTAB. TEM analysis revealed that they had diameters of 11.91 ± 2.31 and 13.49 ± 2.58 nm, respectively, and the similar shell thickness of 5 nm. By the analyses of EDX, UV-VIS absorption spectra, FTIR spectra, and zeta-potential, their core-shell structure, crystal structure, optical property, and surface state were demonstrated. By measuring the photocatalytic degradation rate of Rhodamine B, Ag@TiO2 and NiAg@TiO2 nanoparticles were demonstrated to possess significantly higher photocatalytic activities than pure TiO2 nanoparticles in the visible light region because of the formation of Schottky barrier banding at the core-shell interface as well as the excitation of photogenerated electrons from the surface of Ag or NiAg cores to the conduction band of TiO2 shells. Although NiAg@TiO2 nanoparticles had lower photocatalytic activity than Ag@TiO2 nanoparticles owing to weaker surface plasmon resonance, they could be recovered magnetically from the treated solutions.
    The photoelectrochemical photoelectrodes were also prepared through Ag@TiO2 thin films coating on ITO conducting glass substrates. SEM analysis indicated that the thickness was about 2 µm and the surface morphology was a granular porouslike structure, which could assist the permeation of electrolytes and improve the photoelectrochemical properties. By measuring the photoelectrochemical properties, Ag@TiO2 photoelectrodes were demonstrated to possess significantly 8.33 and 68 folds higher photocurrent density than pure TiO2 photoelectrodes in the UV and visible light region, respectively, because of the formation of Schottky barrier banding at the core-shell interface as well as the excitation of photogenerated electrons or holes from the surface of Ag cores to the conduction or valance band of TiO2 shells. It was noted that different light illumination, UV or visible light, induced opposite photocurrent tendency of Ag@TiO2 photoelectrodes in the basic electrolytes. It enhanced the positive and negative photocurrent density under UV and visible light illumination, respectively. Ag@TiO2 photoelectrodes were effective in the photoelectrochemical applications both in the UV and visible light region. In addition, the trend of enhanced photocurrent in the basic electrolytes could be tuned by different light illumination. It might be utilized in the applications such as photo-switch, photo-sensor and so on.

    總目錄 頁次 中文摘要...........................................................................................I 英文摘要...........................................................................................IV 誌謝...................................................................................................VII 總目錄...............................................................................................VIII 表目錄...............................................................................................XIII 圖目錄...............................................................................................XIV 符號...................................................................................................XIX 第一章 緒論 1.1奈米材料與奈米技術...................................................................1 1.1.1前言..........................................................................................1 1.1.2奈米材料的定義......................................................................3 1.1.3奈米材料的特性......................................................................6 1.1.4奈米材料的應用......................................................................16 1.1.5奈米材料的製備......................................................................17 1.2二氧化鈦奈米材料─光觸媒及光電化學元件...........................25 1.2.1簡介..........................................................................................25 1.2.2二氧化鈦光觸媒......................................................................26 1.2.3二氧化鈦光電化學反應元件..................................................29 1.2.4二氧化鈦奈米粒子之製備簡介..............................................32 1.3奈米複合材料...............................................................................34 1.3.1奈米複合材料之定義與分類..................................................34 1.3.2無機-無機奈米複合材料.........................................................36 1.3.3無機-無機奈米複合材料.........................................................44 1.3.4有機-無機奈米複合材料.........................................................46 1.3.5無機-生物分子奈米複合材料.................................................50 1.4研究動機與內容...........................................................................52 第二章 理論背景 2.1溶膠凝膠法...................................................................................55 2.1.1概論..........................................................................................55 2.1.2水解..........................................................................................59 2.1.3聚縮合......................................................................................62 2.1.4老化與凝膠化..........................................................................64 2.2化學還原法...................................................................................65 2.2.1概論..........................................................................................65 2.2.2銀奈米金屬與鎳奈米金屬之還原原理..................................66 2.3界面活性劑...................................................................................68 2.3.1概論..........................................................................................68 2.4表面電漿共振...............................................................................70 2.4.1概論..........................................................................................70 2.4.2理論推導..................................................................................72 2.5蕭特基能障...................................................................................75 2.5.1概論..........................................................................................75 2.5.2理論推導..................................................................................75 第三章 材料與方法 3.1實驗藥品、儀器與材料...............................................................79 3.1.1藥品..........................................................................................79 3.1.2儀器..........................................................................................80 3.1.3材料..........................................................................................83 3.2純銳鈦礦相二氧化鈦奈米粒子之製備.......................................84 3.3Ag@TiO2、NiAg@TiO2核殼型奈米複合材料...........................86 3.3.1純銀與鎳銀合金奈米金屬之製備..........................................86 3.3.2 Ag@TiO2、NiAg@TiO2核殼型奈米複合材料之製備.........88 3.3.3 Ag@TiO2、NiAg@TiO2光觸媒催化反應裝置與分析.........90 3.4 Ag@TiO2核殼型奈米複合材料薄膜光電極..............................91 3.4.1 Ag@TiO2薄膜光電極之製備.................................................91 3.4.2光電化學反應之裝置與分析..................................................93 3.5特性分析.......................................................................................95 第四章 結果與討論 4.1純銳鈦礦相二氧化鈦奈米粒子...................................................99 4.1.1二氧化鈦奈米粒子溶液之外觀..............................................99 4.1.2二氧化鈦奈米粒子之XRD晶相結構分析.............................100 4.1.3二氧化鈦奈米粒子之TEM分析.............................................102 4.1.4二氧化鈦奈米粒子之BET比表面積分析..............................104 4.1.5二氧化鈦奈米粒子之微拉曼光譜分析.................................105 4.1.6二氧化鈦奈米粒子之FT-IR光譜分析....................................107 4.1.7二氧化鈦奈米粒子之TGA-DTA熱分析.................................109 4.1.8純銳鈦礦晶相二氧化鈦奈米粒子之熱穩定性分析..............111 4.1.9二氧化鈦奈米粒子之UV-Vis光譜分析..................................113 4.1.10二氧化鈦奈米粒子合成機制之探討....................................116 4.1.11二氧化鈦奈米粒子粒徑大小與實驗參數之關係................118 4.2 Ag@TiO2、NiAg@TiO2核殼型奈米複合材料特性分析..........120 4.2.1Ag@TiO2、NiAg@TiO2核殼型奈米複合材料合成機制......120 4.2.2Ag@TiO2、NiAg@TiO2之TEM分析......................................121 4.2.3Ag@TiO2、NiAg@TiO2之EDS成分分析...............................123 4.2.4Ag@TiO2、NiAg@TiO2之XRD晶相結構分析......................126 4.2.5Ag@TiO2、NiAg@TiO2之BET比表面積分析.......................128 4.2.6Ag@TiO2、NiAg@TiO2之UV-Vis吸收光譜分析..................129 4.2.7Ag@TiO2、NiAg@TiO2之FT-IR光譜分析.............................131 4.2.8Ag@TiO2、NiAg@TiO2之界面電位分析..............................133 4.2.9Ag@TiO2、NiAg@TiO2之磁性分離特性..............................135 4.3Ag@TiO2、NiAg@TiO2之光觸媒催化反應分析.......................136 4.3.1 Ag@TiO2、NiAg@TiO2之可見光光觸媒分析.....................136 4.3.2 Ag@TiO2、NiAg@TiO2之可見光光觸媒反應機制.............139 4.3.3Ag@TiO2、NiAg@TiO2之螢光光譜分析..............................141 4.3.4 Ag@TiO2、NiAg@TiO2對玫瑰紅染料之吸附特性分析.....143 4.3.5 Ag@TiO2、NiAg@TiO2之紫外光光觸媒分析.....................145 4.3.6 Ag@TiO2、NiAg@TiO2之光觸媒分析結果.........................148 4.4Ag@TiO2核殼型奈米複合材料薄膜光電極之特性分析...........149 4.4.1 Ag@TiO2薄膜光電極之外觀.................................................149 4.4.2 Ag@TiO2薄膜光電極之SEM分析..........................................150 4.4.3 Ag@TiO2薄膜光電極之XRD晶相結構分析.........................152 4.4.4 Ag@TiO2薄膜光電極之UV-Vis吸收光譜分析.....................154 4.5Ag@TiO2與純TiO2薄膜光電極之光電化學分析.......................156 4.5.1 TiO2光電極之光電化學分析.................................................156 4.5.2 Ag@ TiO2光電極之光電化學分析........................................161 4.5.3 Ag@TiO2光電極進行光電化學反應之光電流分析結果.....169 4.5.4 Ag@TiO2光電極於未加偏壓下之光電化學電池簡單測試.170 第五章 總結論..................................................................................171 參考文獻............................................................................................178 自述....................................................................................................203

    參考文獻
    (1) Feynman, R. P. (1960) A lecture in engineering and science. In California Institute of Technology February edn.
    (2) Drexler, K. E. (1990) Engines of Creation. London:Fourth Estate, pp. 296.
    (3) 黃德歡 (2002) 改變世界的奈米技術,臺北:瀛舟。
    (4) 蘇品書 (1989) 超微粒子材料技術,臺南:復漢。
    (5) 張立德 (2000) 奈米材料,北京:化學工業。
    (6) 張立德,牟季美 (2001) 奈米材料和奈米結構,北京:科學。
    (7) 張志焜,崔作林 (2000) 奈米技術與奈米材料,北京:國防工業。
    (8) Wilson, M.; Kannangara, K.; Smith, G.; Simmons, M.; Raguse, B. (2002) Nanotechnology:Basic Science and Emerging Technologies. New York:Chapman & Hall/CRC, pp. 2.
    (9) http://www.sc.doe.gov/production/bes/scale_of_things.html
    (10) 王崇人 (2002) 科學發展,6,354。
    (11) 郭正次,朝春光 (2004) 奈米結構材料科學,臺北:全華。
    (12) Klabunde, K. J. (2001) Introduction to Nanotechnology. In: Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, pp.1-13.
    (13) 工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。
    (14) Schmid, G. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, pp.15-59.
    (15) 尹邦耀 (2002) 奈米時代,臺北:五南。
    (16) 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文。
    (17) 馬振基 (2004) 奈米材料科技—原理與應用,臺北:全華。
    (18) Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.; Natan, M. J. (1996) J. Phys. Chem. 100, 718.
    (19) Michaels, A. M.; Jiang, J.; Brus, L. (2000) J. Phys. Chem. B 104, 11965.
    (20) Felidj, N.; Aubard, J.; Levi. G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. (2003) Appl. Phys. Lett. 82, 3095.
    (21) Lu, L. H.; Zhang, H. J.; Sun, G. Y.; Xi, S. Q.; Wang, H. S.; Li, X. L.; Wang, X.; Zhao, B. (2003) Langmuir 19, 9490.
    (22) Mandal, M.; Jana, N. R.; Kundu, S. ; Ghosh, S. K. ; Panigrahi, M. ; Pal, T. (2004) J. Nanoparticle Res. 6, 53.
    (23) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. (2001) J. Phys. Chem. B 105, 8861.
    (24) Han, M.; Gao, X.; Su, J. Z.; Nie, S. (2001) Nat. Biotechnol. 19, 631.
    (25) Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Chem. Mater. 14, 2113.
    (26) Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) J. Am. Chem. Soc. 123, 8860.
    (27) Hickey, S. G.; Riley, D. J.; Tull, E. J. (2000) J. Phys. Chem. B 104, 7623.
    (28) Alamri, S. N.; Brinkman, A. W. (2000) J. Phys. D: Appl. Phys. 33, L1.
    (29) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) Nat. Biotechnol. 22, 969.
    (30) 吳國卿,董玉蘭 (1999) 奈米粒子材料的觸媒性質,化工資訊 5月:42.
    (31) 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
    (32) 史宗淮 (1995) 微粉製程技術簡介,化工,42,28。
    (33) Siegel, R. W.; Hu, E.; Roco, M. C. (1999) WTEC panel report on nanostructure science and technology:R&D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston:Kluwer Academic.
    (34) 林景正,賴宏仁 (1999) 奈米材料技術與發展趨勢,工業材料,153,95.
    (35) 馬遠榮 (2002) 奈米科技,臺北:商周。
    (36) Toshima, N.; Yonezawa, T. (1998) New. J. Chem. 1179.
    (37) 黃淑娟 (2002) 化工資訊月刊 16,4,34。
    (38) 吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文。
    (39) Sugimoto, T. (1987) Adv. Colloid Interface Sci. 28, 65.
    (40) Hunter, R. J. (1999) Foundations of Colloid Science Vol. 1, Oxford, New York, 452.
    (41) Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. (1997) J. Mater. Res. 12, 398.
    (42) Zhang, Z.; Zhao, B.; Hu, L. (1996) J. Solid State Chem. 121, 105.
    (43) Teranishi, T.; Nakata, K.; Miyake, M.; Toshima, N. (1996) Chem. Lett. 4, 277.
    (44) Li, X.; Lu, G.; Li, S. (1996) J. Mater. Sci. Lett. 15, 397.
    (45) Lee, J.; Isobe, T.; Senna, M. (1996) J. Colloid Interface Sci. 177, 490.
    (46) Ishizuki, N.; Torigoe, N.; Esumi, K.; Meguro, K. (1991) Colloids and Surfaces 55, 15.
    (47) Osseo-Asare, K.; Arriagada, F. J. (1990) Ceram. Trans. 12, 3.
    (48) Meyer, M.; Wallberg, C.; Kurihara, K.; Fendler, J. H. (1984) J. Chem. Soc. Chem. Commun. 90.
    (49) Fendler, J. H. (1987) Chem. Rev. 87, 877.
    (50) Kitahara, A.; Kazuhiko, K.; Kijiro, K. (1988) J. Colloid Interface Sci. 122, 78.
    (51) Osseo-Asare, K.; Arriagada, F. J. (1990) Colloids and surfaces 50, 321.
    (52) Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. (1997) Chem. Commun. 537.
    (53) Yonezawa, T.; Tominaga, T.; Richard, D. (1996) J. Chem. Soc. Dalton Trans. 783.
    (54) Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 photocatalysis fundamentals and applications. Tokyo : BKC Inc.
    (55) Chuang, H. Y.; Chen, D. H. (2008) J. Nanopart. Res. 10, 233.
    (56) 王勝民 (2000) 新世代的綠色產品—光催化觸媒,化工資訊,14,35。
    (57) Feldmann, C (2001) Adv. Mater. 13, 1301.
    (58) Wang, R.; Hashimoto, K.; Fujishima, A. (1997) Nature 388, 431.
    (59) 張芬如 (1994) 再論二氧化鈦之特性,塗料與塗裝技術,46,56。
    (60) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. (2001) Science 293, 269.
    (61) Sakka, S. et al (2001) special issue on ‘‘Sol–gel processed TiO2- based materials for solar cells, photocatalysts and other applications’’ J Sol–Gel Sci Technol 22, 5.
    (62) Günes, S.; Neugebauer, T.; Sariciftci, N. S.; Roither, J.; Kovalenko, M.; Pillwein, G.; Heiss, W. (2006) Adv. Funct. Mater. 16, 1095.
    (63) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel M. (2006) Adv. Mater. 18, 1202.
    (64) 橋本和仁,藤嶋昭 (2004) 圖解光觸媒のすべて,台北:全華。
    (65) Zhang, R.; Gao, L.; Zhang, Q. (2004) Chemosphere 54, 405.
    (66) Andersson, M.; Österlund, L.; Ljungstörm, S.; Palmqvist, A. (2002) J. Phys. Chem. B 106, 10674.
    (67) 莊浩宇,陳東煌 (2009) 取之不盡的太陽能-光電化學反應,科學發展月刊,436,66。
    (68) Hagfeldt, A.; Grätzel, M. (1995) Chem. Rev. 95, 49.
    (69) Grätzel, M. (2001) Nature 414, 338.
    (70) Fujishima, A; Honda, K. (1972) Nature 238, 37.
    (71) Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. (2007) J. Phys. Chem. C 111, 8677.
    (72) Li, G.; Li, L.; Juliana, B. G.; Woodfield, B. F. (2005) J. Am. Chem. Soc. 127, 8659.
    (73) Oskam, G.; Nellore, A.; Penn, R. L.; Searson, P. C. (2003) J. Phys. Chem. B 107, 1734.
    (74) Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. (2004) J. Am. Chem. Soc. 126, 7790.
    (75) Pan, D.; Zhao, N.; Wang, Q.; Jiang, S.; Ji, X.; An, L. (2005) Adv. Mater. 17, 1991.
    (76) Zhang, Q.; Gao, L. (2003) Langumuir 19, 967.
    (77) 柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,臺北:五南。
    (78) Langmuir, I. (1916) J. Am. Chem. Soc. 38, 2221.
    (79) Blodgett, K. B. (1934) J. Am. Chem. Soc. 56, 495.
    (80) Iler, R. K. (1966) J. Colloid Interface Sci. 21, 569.
    (81) Decher, G.; Hong, J. D.; Schmitt, J. (1992) Thin Solid Films 210/211, 831.
    (82) Morriss, R. H.; Collins, L. F. (1964) J. Chem. Phys. 41, 3357.
    (83) Zhu, J.; Wang, Y. C.; Huang, L. Q.; Lu, Y. M. (2004) Phys. Lett. A 323, 455.
    (84) Mulvaney, P.; Giersig, M.; Henglein, A. (1993) J. Phys. Chem. 97, 7061.
    (85) Henglein, A.; Giersig, M. (1994) J. Phys. Chem. 98, 6931.
    (86) Henglein, A.; Mulvaney, P.; Holzwarth, A.; Sosebee, T. E.; Fojtik, A. (1992) Ber. Bunsenges. Phys. Chem. 96, 754.
    (87) Henglein, A.; Holzwarth, A.; Mulvaney, P. (1992) J. Phys. Chem. 96, 8700.
    (88) Henglein, A.; Mulvaney, P.; Holzwarth, A. (1992) J. Phys. Chem. 96, 2411.
    (89) Rivas, L.; Sánchez-Cortes, S.; García-Ramos, J. V.; Morcillo, G. (2000) Langmuir 16, 9722.
    (90) Rivas, J.; Sánchez, R. D.; Fondado, A.; Izco, C.; García-Bastida, A. J. ; García-Otero, J.; Mira, J.; Baldomir, D.; González, A.; Lado, I.; López-Quintela, M. A.; Oseroff, S. B. (1994) J. Appl. Phys. 76, 6564.
    (91) Carpenter, E. E. ; Sangregorio, C.; O’Connor, C. J. (1999) IEEE Trans. Magn. 35, 3496.
    (92) Zhang, D.; Glavee, G.; Klabunde, K. J.; Hadjipanayis, G. C.; Sorensen, C. M. (1997) High Temp. Mater. Sci. 36, 93.
    (93) Sumiyama, K.; Hihara, T.; Peng, D. L.; Katoh, R. (2005) Sci. Technol. Adv. Mater. 6, 18.
    (94) You, C. Y.; Yang, Z. Q.; Xiao, Q. F.; Skorvanek, I.; Kovac, J.; Li, Z. J.; Liu, W.; Zhang, Z. D. (2004) Eur. Phys. J. Appl. Phys. 28, 73.
    (95) 劉雪寧,楊治中 (1999) 納米複合材料的設計與應用,化學通報,62,99124。
    (96) 陳東煌 (2003) 複合奈米粒子,化工資訊與商情,3,58。
    (97) 陳東煌 (2003) 複合奈米粒子的製備與應用,化工技術,120,180。
    (98) Schärtl, W. (2000) Adv. Mater. 12, 1899.
    (99) Caruso, F. (2001) Adv. Mater. 13, 11.
    (100) Schneider, J. J. (2001) Adv. Mater. 13, 529.
    (101) Zhong, C. J.; Maye, M. M. (2001) Adv. Mater. 13, 1507.
    (102) Chen, S.; Li, N. (2002) J. Mater. Chem. 12, 1124.
    (103) Audebert, P.; Sadki, S.; Miomandre, F.; Lanneau, G.; Frantz, R.; Durand, J. O. (2002) J. Mater. Chem. 12, 1099.
    (104) Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I. (2002) Phys. Rev. Lett. 89, 203002.
    (105) Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. (2000) Pure Appl. Chem. 72, 295.
    (106) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (1997) J. Phys. Chem. B 101, 9463.
    (107) Danek, M.; Jensen, K. F.; Bawendi, M. G. (1996) Chem. Mater. 8, 173.
    (108) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. (1997) J. Am. Chem. Soc. 119, 7019.
    (109) Hines, M. A.; Guyot-Sionnest, P. (1996) J. Phys. Chem. 100, 468.
    (110) Hasselbarth, A.; Eychmüller, A.; Eichberger, M.; Giersig, M.; Mews, A.; Weller, H. (1993) J. Phys. Chem. 97, 5333.
    (111) Kamalov, V. F.; Little, R.; Logunov, S. L.; El-Sayed, M. A. (1996) J. Phys. Chem. 100, 6381.
    (112) Zhou, H. S.; Sasahara, H.; Homma, I.; Komiyama, H.; Haus, J. (1994) Chem. Mater. 6, 1534.
    (113) Counio, G.; Esnouf, S.; Gacoin, T.; Boilot, J. P. (1996) J. Phys. Chem. 100, 20021.
    (114) Murray, C. B.; Norris, D. J.; Bawendi, M. G. (1993) J. Am. Chem. Soc. 115, 8706.
    (115) Revaprasadu, N.; Malik, M. A.; O’Brien, P. ; Wakefield, G. (1999) Chem. Commun. 1573.
    (116) Kickelbick, G.; Liz-Marzán, L. M. (2004) Core-shell nanoaprticles. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.199-220.
    (117) Hoener, C, F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, A. M.; Mallouk. T. E.; Webber, S. E.; White, J. M. (1992) J. Phys. Chem. 96, 3812
    (118) Malik, M. A.; O’Brien, P.; Revaprasadu, N. (2002) Chem. Mater. 14, 2004.
    (119) Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. (1996) J. Phys. Chem. 100, 8927.
    (120) Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. (1999) Chem. Mater. 11, 3096.
    (121) Han, M. Y.; Huang, W.; Chew, C. H.; Gan, L. M.; Zhang, X. J.; Ji, W. (1998) J. Phys. Chem. B 102, 1884.
    (122) Cao, Y. W.; Banin, U. (1999) Angew. Chem., Int. Ed. 38, 3692.
    (123) Hu, J. Q.; Bando, Y. (2004) Appl. Phys. Lett. 85, 3593.
    (124) Elder, S. H.; Cot, F. M.; Su, Y.; Heald, S. M.; Tyryshkin, A. M.; Bowman, M. K.; Gao, Y.; Joly, A. G.; Balmer, M. L.; Kolwaite, A. C.; Magrini, K. A.; Blake, D. M. (2000) J. Am. Chem. Soc. 122, 5138.
    (125) Morriss, R. H.; Collins, L. F. (1964) J. Chem. Phys. 41, 3357.
    (126) Zhu, J.; Wang, Y. C.; Huang, L. Q.; Lu, Y. M. (2004) Phys. Lett. A 323, 455.
    (127) Mulvaney, P.; Giersig, M.; Henglein, A. (1993) J. Phys. Chem. 97, 7061.
    (128) Henglein, A.; Giersig, M. (1994) J. Phys. Chem. 98, 6931.
    (129) Henglein, A.; Mulvaney, P.; Holzwarth, A.; Sosebee, T. E.; Fojtik, A. (1992) Ber. Bunsenges. Phys. Chem. 96, 754.
    (130) Henglein, A.; Holzwarth, A.; Mulvaney, P. (1992) J. Phys. Chem. 96, 8700.
    (131) Henglein, A.; Mulvaney, P.; Holzwarth, A. (1992) J. Phys. Chem. 96, 2411.
    (132) Rivas, L.; Sánchez-Cortes, S.; García-Ramos, J. V. ; Morcillo, G. (2000) Langmuir 16, 9722.
    (133) Njoki, P. N.; Luo, J.; Wang, L. Y.; Maye, M. M.; Quaizar, H., Zhong, C. J. (2005) Langmuir 21, 1623.
    (134) Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai, C. L. (2004) Chem. Commun. 1496.
    (135) Scott, R. W. J.; Sivadinarayana, C.; Wi;on, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. (2005) J. Am. Chem. Soc. 127, 1380.
    (136) Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La-Parola, V.; Deganello, G.; Beck, A.; Koppany, Z.; Frey, K. ; Horvath, D. ; Guczi, L. (2003) Appl. Catal. A 251, 359.
    (137) Zhang, X.; Chan, K. Y. (2003) Chem. Mater. 15, 451.
    (138) Heemeier, M.; Carlsson, A. F.; Naschitzki, M.; Schmal, M.; Baumer, M.; Freund, H. J. (2002) Angew. Chem., Int. Ed. 41, 4073.
    (139) Nagaveni, K.; Gayen, A.; Subbanna, G. N.; Hegde, M. S. (2002) J. Mater. Chem. 12, 3147.
    (140) Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. (1999) J. Phys. Chem. B 103, 9673.
    (141) Cho, S. J.; Ryoo, R. (2001) J. Phys. Chem. B 105, 1293.
    (142) Toshima, N.; Shiraishi, Y.; Shiotsuki, A.; Ikenaga, D.; Wang, Y. (2001) Eur. Phys. J. D 16, 209.
    (143) Okitsu, K.; Murakami, M.; Tanabe, S.; Matsumoto, H. (2000) Chem. Lett. 11, 1336.
    (144) Pecharsky, V. K.; Gschneidner, K. A., Jr. (1999) J. Magn. Magn. Mater. 200, 44.
    (145) Kormann, C.; Schwab, E.; Raulfs, F. W.; Beck, K. H. (1996) Magnetic ink concentrate. U.S. Patent 5,500,141.
    (146) Lodder, J. C.; Monsma, D. J.; Vlutters, R.; Shimatsu, T. (1999) J. Magn. Magn. Mater. 198-199, 119.
    (147) Iakovenko, S. A.; Trifonov, A. S.; Giersig, M.; Mamedov, A.; Nagecha, D. K.; Hanin, V. V.; Soldatov, E. C.; Kotov, N. A. (1999) Adv. Mater. 11, 388.
    (148) Fried, T.; Shemer, G.; Markovich, G. (2001) Adv. Mater. 13, 1158.
    (149) ALiev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Adv. Mater. 11, 1006.
    (150) Giersig, M.; Hilgendorff, M. (1999) J. Phys. D: Appl. Phys. 32, L111.
    (151) Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Schiestel, T.; Schmidt, H.; Felix, R. (1999) J. Magn. Magn. Mater. 194, 185.
    (152) Mapra, M. Y.; Körner, I. J.; Hildebrandt, M.; Bargou, R.; Krahl, D.; Reichardt, P.; Dörken, B. (1997) Blood 89, 337.
    (153) Rivas, J.; Sánchez, R. D.; Fondado, A.; Izco, C.; García-Bastida, A. J. ; García-Otero, J.; Mira, J.; Baldomir, D.; González, A.; Lado, I.; López-Quintela, M. A.; Oseroff, S. B. (1994) J. Appl. Phys. 76, 6564.
    (154) Seip, C. T.; O’Connor, C. J. (1999) Nanostruct. Mater. 12, 183.
    (155) Cho, S. J.; Kauzlarich, S. M.; Olamit, J.; Liu, K.; Grandjean, F.; Rebbouh, L.; Long, G. J. (2004) J. Appl. Phys. 95, 6804.
    (156) Carpenter, E. E. ; Sangregorio, C.; O’Connor, C. J. (1999) IEEE Trans. Magn. 35, 3496.
    (157) Zhang, D.; Glavee, G.; Klabunde, K. J.; Hadjipanayis, G. C.; Sorensen, C. M. (1997) High Temp. Mater. Sci. 36, 93.
    (158) Sumiyama, K.; Hihara, T.; Peng, D. L.; Katoh, R. (2005) Sci. Technol. Adv. Mater. 6, 18.
    (159) You, C. Y.; Yang, Z. Q.; Xiao, Q. F.; Skorvanek, I.; Kovac, J.; Li, Z. J.; Liu, W.; Zhang, Z. D. (2004) Eur. Phys. J. Appl. Phys. 28, 73.
    (160) Kwiatkowski, K. C.; Lukehart, C. M. (2002) Nanocomposites prepared by sol-gel methods:synthesis and characterization. In:Nalwa, H. S., ed. Nanostructured materials and nanotechnology. San Diego:Academic Press, pp.57-91.
    (161) Li, W.; Seal, S. (2004) Nonlinear optical materials by sol-gel method. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 8, pp.49-66.
    (162) Ohmori, M.; Matijevic, E. (1992) J. Colloid Interface Sci. 150, 594.
    (163) Thies-Weesie, D. M.; Philipse, A. P. (1995) Langmuir 11, 4180.
    (164) Philipse, A. P.; van Bruggen, M. P.; Pathmamanoharan, C. (1994) Langmuir 10, 92.
    (165) Correa-Duarte, M. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. (1998) Langmuir 14, 6430.
    (166) Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. (1998) Chem. Mater. 10, 3936.
    (167) Donselaar, L. N.; Philipse, A. P. (1999) J. Colloid Interface Sci. 212, 14.
    (168) Aliev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Adv. Mater. 11, 1006.
    (169) Ohmori, M.; Matijevic, E. (1993) J. Colloid Interface Sci. 160, 288.
    (170) Liz-Marzán, L. M.; Philipse, A. P. (1995) J. Colloid Interface Sci. 176, 459.
    (171) Nooney, R. I.; Dhanasekaran, T.; Chen, Y.; Josephs, R.; Ostafin, A. E. (2002) Adv. Mater. 14, 529.
    (172) Obare, S. O.; Jana, N. R.; Murphy, C. J. (2001) NanoLetters 1, 601.
    (173) Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Langmuir 12, 4329.
    (174) Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. (1999) Langmuir 15, 701.
    (175) Hall, S. R.; Davis, S. A.; Mann, S. (2000) Langmuir 16, 1454.
    (176) Liz-Marzán, L. M.; Mulvaney, P. (1998) New J. Chem. 1285.
    (177) Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Chem. Commun. 731.
    (178) Hardikar, V. V.; Matijevic, E. (2000) J. Colloid Interface Sci. 221, 133.
    (179) Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. (1997) Adv. Mater. 9, 570.
    (180) Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. (2002) Nano lett. 2, 427.
    (181) Giersig, M.; Liz-Marzán, L. M.; Ung, T.; Su, D.; Mulvaney, P. (1997) Ber. Bunsenges. Phys. Chem. 101, 1617.
    (182) Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talhman, D. R.; Adair, J. H. (1999) Langmuir 15, 4328.
    (183) Pastoriza-Santos, I.; Liz-Marzán, L. M. (1999) Langmuir 15, 948.
    (184) Rogach, A. L.; Nagesha, D. K.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. (2000) Chem. Mater. 12, 2676.
    (185) Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. (1998) Chem. Phys. Lett. 286, 497.
    (186) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. (2001) J. Phys. Chem. B 105, 8861.
    (187) Bruchez, Jr. M.; Moronne, M.; Gin, P. ; Weiss, S. ; Alivisatos, A. P. (1998) Science 281, 2013.
    (188) Pastoriza-Santos, I.; Koktysch, D. ; Mamedov, A.; Kotov, N. A.; Liz-Marzán, L. M. (1999) Langmuir 16, 2731.
    (189) Oldfield, G.; Ung, T.; Mulvaney, P. (2000) Adv. Mater. 12, 1519.
    (190) Selvan, S. T.; Hayakawa, T.; Nogami, M.; Kobayashi, Y.; Liz-Marzán, L. M.; Hamanaka, Y.; Nakamura, A. (2002) J. Phys. Chem. B 106, 10157.
    (191) Lee, M.; Choi, Y. S.; Kim, T. S. (1997) J. Non-cryst. Solids 211, 143.
    (192) Debrus, S.; Lafait, J.; May, M.; Pincon, N.; Prot, D.; Sella, C.; Venturini, J. (2000) J. Appl. Phys. 88, 4469.
    (193) Nogami, M.; Abe, Y.; Nakamura, A. (1995) J. Mater. Res. 10, 2648.
    (194) Kundu, D.; Honma, I.; Osawa, T.; Komiyama, H. (1994) J. Am. Ceram. Soc. 77, 1110.
    (195) De, G.; Taper, L.; Catalano, M.; Battaglin, G. ; Caccavale, F. ; Gonella, F. ; Mazzoldi, P. ; Haglund, R., Jr. (1996) Appl. Phys. Lett. 68, 3820.
    (196) Isobe, T.; Takeuchi, K.; Senna, M. (1996) J. Non-cryst. Solids 194, 58.
    (197) Zhou, Q. F.; Zhang, Q. Q.; Zhang, J. X.; Zhang, L. Y.; Yao, X. (1997) Mater. Lett. 31, 39.
    (198) Lu, S. G.; Yu, Y. J.; Mak, C. L. ; Wong, K. H.; Zhang, L. Y.; Yao, X. (2003) Microelectron. Eng. 66, 171.
    (199) Reisfeld, R. (2002) J. Alloys Compounds. 341, 56.
    (200) Lifshitz, E.; Dag, I.; Litvin, I.; Hodes, G.; Gorer, S.; Reisfeld, R.; Zelner, M.; Minti, H. (1998) Chem. Phys. Lett. 288, 188.
    (201) Martucci, A.; Guglielmi, M.; Urabe, K. (1998) J. Sol-Gel Sci. Technol. 11, 105.
    (202) Zelner, M.; Minti, H.; Reisfeld, R.; Cohen, H.; Feldman, Y.; Cohen, S. R.; Tenne, R. (2001) J. Sol-Gel Sci. Technol. 20, 153.
    (203) Sashchiuk, A.; Lifshitz, E.; Reisfeld, R.; Saraidarov, T.; Zelner, M.; Willenz, A. (2002) J. Sol-Gel Sci. Technol. 24, 31.
    (204) Joensson, J. E.; Hassander, H.; Toernell, B. (1994) Macromolecules 27, 1932.
    (205) Cairns, D. B.; Armes, S. P.; Bremer, L. G. B. (1999) Langmuir 15, 8052.
    (206) Lu, C.; Pelton, R. (2002) Colloids Surf. A 201, 161.
    (207) Min, K.; Hu, J.; Wang, C.; Elaissari, A. (2002) J. Polym. A: Polym. Chem. 40, 892.
    (208) Pichot, C.; Elaïssari, A. ; Duracher, D. ; Meunier, F. ; Sauzedde, F. (2001) Macromol. Symp. 175, 285.
    (209) Huang, H.; Kowalewski, T.; Remsen, E. E.; Gertzmann, R.; Wooley, K. L. (1997) J. Am. Chem. Soc. 119, 1653.
    (210) Iijima, M. ; Nagasaki, Y. ; Okada, T. ; Kato, M. ; Kataoka, K. (1999) Macromolecules 32, 1140.
    (211) McCaughey, B.; Hampsey, J. E.; Wang, D.; Lu, Y. (2004) Self-assembled organic/inorganic nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.529-559.
    (212) Ferreira, M.; Zucolotto, V.; Ferreira, M.; Oliveira, O. N.; Jr. (2004) Layer-by-layer and Langmuir-Blodgett films from nanoparticles and complexes. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.441-465.
    (213) Ariga, K. (2004) Layer-by-layer nanoarchitectonics. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.467-480.
    (214) Dirix, Y.; Bastiaansen, C.; Caseri, W.; Smith, P. (1999) Adv. Mater. 11, 223.
    (215) Quaroni, L.; Chumanov, G. (1999) J. Am. Chem. Soc. 121, 10642.
    (216) Horswell, S. L.; Kiely, C. J.; O'Neil, I. A.; Schiffrin, D. J. (1999) J. Am. Chem. Soc. 121, 5573.
    (217) Gianini, M.; Caseri, W. R.; Suter, U. W. (2001) J. Phys. Chem. B 105, 7399.
    (218) Dai, J.; Bruening, M. L. (2002) Nano Lett. 2, 497.
    (219) Watanabe, S.; Regen, S. L. (1994) J. Am. Chem. Soc., 116, 8855.
    (220) Bethell, D.; Brust, M.; Schiffrin, D. J.; Kiely, C. (1996) J. Electroanalytical Chem., 409, 137.
    (221) Werne, T. V.; Patten, T. E. (1999) J. Am. Chem. Soc. 121, 7409.
    (222) Prucker, O.; Rühe, J. (1998) Macromolecules 31, 602.
    (223) Husseman, M.; Malmström, E. E.; McNamara, M.; Mate, M.; Mecerreyes, D.; Benoit, D. G.; Hedrick, J. L.; Mansky, P.; Huang, E.; Russell, T. P.; Hawker, C. J. (1999) Macromolecules 32, 1424.
    (224) Zhou, Q.; Wang, S.; Fan, X.; Advincula, R.; Mays, J. (2002) Langmuir 18, 3324.
    (225) Fleming, M. S.; Mandal, T. K.; Walt, D. R. (2001) Chem. Mater. 13, 2210.
    (226) Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A. (2001) Colloid Polym. Sci. 279, 947.
    (227) Percy, M. J.; Armes, S. P. (2002) Langmuir 18, 4562.
    (228) Mori, H.; Seng, D. C.; Zhang, M.; Müller, A. H. E. (2002) Langmuir 18, 3682.
    (229) Stejskal, J.; Kratochvíl, P.; Armes, S. P.; Lascelles, S. F.; Riede, A.; Helmstedt, M.; Proke , J.; K ivka, I. (1996) Macromolecules 29, 6814.
    (230) Lascelles, S. F.; McCarthy, S. F.; Butterworth, M. D.; Armes, M. D. (1998) Colloid Polym. Sci. 276, 893.
    (231) Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T. (1997) Langmuir 13, 6195.
    (232) Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B. (1999) Langmuir 15, 1945.
    (233) Shafi, K. V. P. M.; Ulman, A.; Dyal, A.; Yan, X.; Yang, N. L.; Estournès, C.; Fournès, L.; Wattiaux, A.; White, H.; Rafailovich, M. (2002) Chem. Mater. 14, 1778.
    (234) Jones, F.; Cölfen, H.; Antonietti, M. (2000) Colloid Polym. Sci. 278, 491.
    (235) Gonsalves, K. E.; Li, H.; Santiago, P. (2001) J. Mater. Sci. 36, 2461.
    (236) Mamedov, A. A.; Kotov, N. A. (2000) Langmuir 16, 5530.
    (237) Xia, H.; Wang, Q. (2002) Chem. Mater. 14, 2158.
    (238) Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. (2000) Langmuir 16, 2731.
    (239) Hu, K.; Brust, M.; Bard, A. J. (1998) Chem. Mater. 10, 1160.
    (240) Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Susha, A. S.; Caruso, F. (2002) Colloid Surf. Sci. A 202, 135.
    (241) Farmer, S. C.; Patten, T. E. (2001) Chem. Mater. 13, 3920.
    (242) Pavel, F. M.; Mackay, R. A. (2000) Langmuir 16, 8568.
    (243) Hong, X.; Li, J.; Wang, M.; Xu, J.; Guo, W.; Li, J.; Bai, Y.; Li, T. (2004) Chem. Mater., 16, 4022.
    (244) Susha, A. S.; Caruso, F.; Rogach, A. L.; Sukhorukov, G. B.; Kornowski, A.; Möhwald, H.; Giersig, M.; Eychmüller, A.; Weller, H. (2000) Colloid Surf. Sci. A 163, 39.
    (245) Langmuir, I. (1916) J. Am. Chem. Soc. 38, 2221.
    (246) Blodgett, K. B. (1934) J. Am. Chem. Soc. 56, 495.
    (247) Iler, R. K. (1966) J. Colloid Interface Sci. 21, 569.
    (248) Decher, G.; Hong, J. D.; Schmitt, J. (1992) Thin Solid Films 210/211, 831.
    (249) 吳建成、陳東煌 (2005) 逐層自組裝奈米結構多層膜,化工資訊與商情 3月:64.
    (250) Gill, L. (2004) Biodoped sol-gel polymer nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.269-292.
    (251) He, X.; Lin, X.; Wang, K.; Chen, L.; Wu, P.; Yuan, Y. (2004) Biocompatiable core-shell nanoparticles for biomedicine. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.235-253.
    (252) Battati, S.; Pioselli, B.; Campanini, B.; Viappiani, C.; Mozzarelli, A. (2004) Protein-doped nanoporous silica gels. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.81-103.
    (253) Ahn, C. H.; Choi, J. W.; Cho, H. J. (2004) Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.815-821.
    (254) Tartaj, P. (2004) Nanomagnets for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.823-842.
    (255) Berry, C. C.; Curtis, A. S. G. (2003) J. Phys. D: Appl. Phys. 36, R198.
    (256) Shinkai, M. (2002) J. Biosci. Bioeng. 94, 606.
    (257) Wang, J.; Pamidi, P. V. A. (1997) Anal. Chem. 69, 4490.
    (258) Sampath, S.; Lev, O. (1997) Adv. Mater. 9, 410.
    (259) Wang, B.; Li, B.; Deng, Q.; Dong, S. (1998) Anal. Chem. 70, 3170.
    (260) Wang, B.; Li, B.; Wang, Z.; Xu, G.; Wang, Q.; Dong, S. (1999) Anal. Chem. 71, 1935.
    (261) Kadnikova, E. N.; Kostic, N. M. (2002) J. Mol. Catal. B 18, 39.
    (262) Liu, Z.; Liu, B.; Kong, J.; Deng, J. (2000) Anal. Chem. 72, 4707.
    (263) Williams, A. K.; Hupp, J. T. (1998) J. Am. Chem. Soc. 120, 4366.
    (264) Ji, Q.; Lloyd, C. R.; Ellis, W. R.; Jr., Eyring, E. M. (1998) J. Am. Chem. Soc. 120, 221.
    (265) Aylott, J. W.; Richardson, D. J.; Russell, D. A. (1997) Chem. Mater. 9, 2261.
    (266) Barker, S. L. R.; Kopelman, R.; Meyer, T. E.; Cusanovich, M. A. (1998) Anal. Chem. 70, 971.
    (267) Wu, S.; Ellerby, L. M.; Cohan, J. S.; Dunn, B.; El-Sayed, M. A.; Valentine, J. S.; Zink, J. I. (1993) Chem. Mater. 5, 115.
    (268) Bronshtein, A.; Aharonson, N.; Avnir, D.; Turniansky, A.; Altstein, M. (1997) Chem. Mater. 9, 2632.
    (269) Gill, I.; Ballesteros, A. (1998) J. Am. Chem. Soc. 120, 8587.
    (270) Reetz, M. T. (1997) Adv. Mater. 9, 943.
    (271) Reetz, M. T.; Zonta, A.; Simpelkamp, J.; Könen, W. (1996) Chem. Commun. 1397.
    (272) Obert, R.; Dave, B. C. (1999) J. Am. Chem. Soc. 121, 12192.
    (273) Shabat, D.; Grynszpan, F.; Saphier, S.; Turniansky, A.; Avnir, D.; Keinan, E. (1997) Chem. Mater. 9, 2258.
    (274) Sonti, S. V.; Bose, A. (1995) J. Colloids Interface Sci. 170, 575.
    (275) Gupta, A. K., Gupta, M. (2005) Biomaterials 26, 3995.
    (276) Chan, W. C. W.; Nie, S. (1998) Science 281, 2016.
    (277) Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. (1998) Science 281, 2013.
    (278) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. (1997) Science 277, 1078.
    (279) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. (2000) Science 289, 1757.
    (280) Park, S. J.; Taton, T. A.; Mirkin, C. A. (2002) Science 295, 1503.
    (281) Cao, Y. W. C.; Jin, R.; Mirkin, C. A. (2002) Science 297, 1536.
    (282) He, D.; Lin, F. (2007) Mater. Lett. 61, 3385.
    (283) Hirano, M.; Ota, K.; Iwata H. (2004) Chem. Mater. 16, 3725.
    (284) Chuang, H. Y.; Chen, D. H. (2009) Nanotechnology 20, 105704.
    (285) Sakai, H.; Kanda, D.; Shibata, H.; Ohkubo, T.; Abe, M. (2006) J. Am. Chem. Soc. 128, 4994.
    (286) Hirakawa, T.; Kamat, P. V. (2004) Langmuir 20, 5645.
    (287) Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D.; Anpo, M. (2007) J. Colloid Interface Sci. 315, 382.
    (288) Xin, B.; Jing, L.; Ren, Z.; Wang, B.; Fu, H. (2005) J. Phys. Chem. B 109, 2805.
    (289) Sharma, S. D.; Singh, D.; Saini, K. K.; Kant, C.; Sharma, V.; Jain, S. C.; Sharma, C. P. (2006) Appl. Catal. A 314, 40.
    (290) Wang, W.; Zhang, J.; Chen, F.; He, D.; Anpo, M. (2008) J. Colloid Interface Sci. 323, 182.
    (291) Zhang, F.; Pi, Y.; Cui, J.; Yang, Y.; Zhang, X.; Guan, N. (2007) J. Phys. Chem. C 111, 3756.
    (292) Chan, S. C.; Barteau, M. A. (2005) Langmuir 21, 5588.
    (293) Xu, M. W.; Bao, S. J.; Zhang, X. G. (2005) Mater. Lett. 59, 2194.
    (294) Rawat, J.; Rana, S.; Srivastava, R.; Devesh, R.; Misra, K. (2007) Mater. Sci. Eng. C 27, 540.
    (295) Woo, S. H.; Kim, W. W.; Kim, S. J.; Rhee, C. K. (2007) Mater. Sci. Eng. A 449−451, 1151.
    (296) Kikuchi, H.; Kitano, M.; Takeuchi, M.; Matsuoka, M.; Anpo, M.; Kamat, P. V. (2004) J. Phys. Chem. B 110, 5537.
    (297) Luo, H.; Mueller, A. H.; McCleskey, T. M.; Burrell, A. K. ; Bauer, E.; Jia, Q. X. ; (2008) J. Phys. Chem. C 112, 6099.
    (298) Chi, C. F.; Lee, Y. L.; Weng, H. S. (2008) Nanotechnology 19, 125704.
    (299) Long, M.; Cai, W.; Kisch, H. (2008) J. Phys. Chem. C 112, 548.
    (300) Alexander, B. D.; Kulesza, P. J.; Rutkowska, I.; Solarska, R.; Augustynski, J. (2008) J. Mater. Chem. C 18, 2298.
    (301) Chandrasekharan, N.; Kamat, P. V. (2000) J. Phys. Chem. B 104, 10851.
    (302) Park, J. H.; Kim, S.; Bard, A. J. (2006) Nano Lett. 6, 24.
    (303) Wu, G.; Wang, J.; Thomas, D. F.; Chen, A. (2008) Langmuir 24, 3503.
    (304) Chu, D.; Yuan, X.; Qin, G.; Xu, M.; Zheng, P.; Lu, J.; Zha, L. (2008) J. Nanopart. Res. 10, 357.
    (305) Zhang, D.; Song, X.; Zhang, R.; Zhang, M.; Liu, F. (2005) Eur. J. Inorg. Chem. 24, 1643.
    (306) Zhang, L.; Xia, D.; Shen, Q. (2006) J. Nanopart. Res. 8, 20.
    (307) Tom, R. T.; Nair, J. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R.; Vijayamohanan, K.; Pradeep, T. (2003) Langmuir 19, 3439.
    (308) Sol-gel techologies and their products, http://www.chemat.com/, CHEMAT Techology, Inc.
    (309) 謝坤龍 (2000) 鈀銀合金/氧化鋁複合膜之特性研究:以溶膠凝膠法修飾基材孔徑之探討,國立成功大學化學工程研究所碩士論文。
    (310) Livage, J. ; Henry, M. (1988) Ultrastructure processing of advanced ceramics. In: Mackenzie, J. D.; Ulrich, D. R., eds. New York:Wiley, pp.183.
    (311) Binker, C. J. ; Schwewe, G. W. (1990) Sol-gel science : the physics and chemistry of sol-gel processing. Academic Press, Inc.
    (312) Turkevich, J. ; Kirn, G. (1970) Science 169, 870.
    (313) Goia, D. V.; Matijevic, E. (1998) New J. Chem. 22, 1203.
    (314) Lindmanm, B. ; Wennerstorm, H. (1980) Micelles : Amphiphile aggregation in aqueous solution, Heidelberg : Springer-Verlag.
    (315) Schimid, G. (1994) Clusters and colloids : from theory to application, New York : VCH.
    (316) Link, S. ; Wang, Z. L. ; El-Sayed M. A. (1999) J. Phys. Chem. B. 103, 3529.
    (317) 陳毓宏 (2003) 新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀,金,國立成功大學化學研究所博士論文。
    (318) Mulvaney, P. (1996) Langmuir 12, 788.
    (319) Weaver, J. C.; Chizmadzhev, Y. A. (1996) Bioelectrochemistry and Bioenergetics 41, 135.
    (320) Mie, G. (1908) Ann. Phys. 25, 377.
    (321) Kreibig, U.; Fragstein, C. V. Z. (1969) Phys. 224, 307.
    (322) Selby, K.; Vollmer, M.; Masui, J.; Kersin, V.; de Heer, W. A.; Knight, W. D. (1989) Phys. Rev. B 40, 5417.
    (323) Neamen, D. A. (1997) Semiconductor physics and devices. Boston : Irwin.
    (324) Sharma, B. L. (1984) Metal-semiconductor Schottky barrier junctions and their applications. New York : Plenum.
    (325) Schroder, D. K. (1998) Semiconductor material and devices characterization. New York:Wiley.
    (326) Yan, M.; Chen, F.; Zhang, J.; Anpo, M. (2005) J. Phys. Chem. B 109, 8673.
    (327) Brunaller, S. ; Emmett, P. H.; Teller, E. (1938) J. Am. Chem. Soc. 60, 390.
    (328) Mao, Y. ; Wong, S. S. (2006) J. Am. Chem. Soc. 128, 8217.
    (329) Qian, L.; Jin, J. A.; Yang, S. Y.; Du, Z. L.; Xu, X. R. (2005) Chem. Mater. 17, 5334.
    (330) Kim, Y. H.; Kang, Y. S.; Jo, B. G. (2004) J. Ind. Eng. Chem. 10, 739.
    (331) Lee, C. C.; Chen, D. H. (2006) Nanotechnology 17, 3094.
    (332) Guo, H. X.; Zhao, X. P,; Ning, G. H.; Liu, G. Q. (2003) Langmuir 19, 4884.
    (333) Li, X. Z.; Li, F. B. (2001) Environ. Sci. Technol. 35, 2381.
    (334) Kawahara, K.; Suzuki, K.; Ohko, Y.; Tatsuma, T. (2005) Phys. Chem. Chem. Phys. 7, 3851.
    (335) Fu, Q.; Wanger, T. (2007) Surf. Sci. Rep. 62, 431.
    (336) Brandl, D. W.; Nordlander, P. (2007) J. Chem. Phys. 126, 144708.
    (337) Hirakawa, T.; Kamat, P. V. (2005) J. Am. Chem. Soc. 127, 3928.
    (338) Beydoun, D.; Amal, R. (2000) J. Phys. Chem. B 104, 4387.
    (339) Xu, S.; Shangguan, W.; Yuan, J.; Chen, M.; Shi, J.; Jiang, Z. (2008) Nanotechnology 19, 095606.
    (340) Raja, K. S.; Misra, M.; Mahajan, V. K.; Gandhi, T.; Pillai, P.; Mohapatra, S. K. (2006) J. Pow. Sour. 161, 1450.
    (341) Sharon, M. (2001) Semiconductor electrodes and photoelectrochemistry In:Brad, A. J.; Stratmann, M., ed. Encyclopedia of Electrochemistry. New York:Wiley, Vol. 6, pp.287-391.
    (342) Bard, A. J.; Faulkner, L. R. (1980) Electrochemical Methods. New York:Wiley.
    (343) Bak, T.; Nowotny, J.; Rekas, M.; Sorrell C. C. (2002) Inter. J. Hydrogen Energy 27, 991.
    (344) Wang, H.; He, J.; Boschloo, G.; Lindström, H.; Hagfeldt, A.; Lindquist, S. E. (2001) J. Phys. Chem. B 105, 2529.
    (345) Matsubara, K.; Tatsuma, T. (2007) Adv. Mater. 19, 2802.

    下載圖示 校內:2011-06-23公開
    校外:2011-06-23公開
    QR CODE