| 研究生: |
黃偉晟 Huang, Wei-Cheng |
|---|---|
| 論文名稱: |
山羊瘤胃厭氧細菌之纖維水解酵素的特性分析 Characterization of an endo-1,4-beta-glucanase from an anaerobic ruminal bacterium in Nubian goat |
| 指導教授: |
賀端華
Ho, Tuan-Hua 余淑美 Yu, Su-May |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 纖維素 、纖維素酶 、厭氧微生物 、鏈球菌 、內切性的水解酶 |
| 外文關鍵詞: | Cellulose, cellulase, Streptococcus sp., anaerobic microbes, endo-glucanase |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物的細胞壁主要由纖維素和半纖維素所組成,大約占所有組成的50%~60%,目前被認為是最主要的生質材料。科學家利用纖維素酶將纖維素和半纖維素這兩個主要的成分轉化為可發酵的醣類的方法已日益趨進重要,再加上這些可發酵的醣類是產生生物能源(bio-energy)最主要的原料,例如乙醇、丁醇、生質燃料等。在現今社會化石燃料日益短缺的問題下,再生能源的生產或許可以暫緩能源危機。目前在草食性動物瘤胃當中所居住的厭氧微生物由於草食性動物食性的關係,推測其可能具有多樣性纖維素分解酵素的活性,因此科學家認為這些微生物在分解纖維素上是相當重要的來源之一。在此研究當中,我們從努比亞山羊的瘤胃中發現一株具有纖維素酶活性的厭氧細菌。並且搭配上16S rDNA比對序列分析發現,這菌株是屬於鏈球菌屬(Streptococcus sp.)。鏈球菌是一種球狀的革蘭氏陽性菌,無法自行移動,並且不會產生孢子。在此研究中,將這菌株培養在以農業廢棄物作為碳源的培養液中,經由活性測試可以偵測到有較高的纖維素酶活性。這些纖維素水解酶的的活性,利用CMC-zymographic的方法更被為確定。接著依據已發表的Streptococcus gallolyticus的基因體序列去設計引子對(primer pair),利用PCR,找到了1623bp,可以轉譯為540個胺基酸的纖維水解酵素,命名為Sg-EGV。這個纖維水解酵素屬於內切性的水解酶(endo-glucanase),被歸類為水解酵素第五類。利用大腸桿菌去大量表現生產Sg-EGV,表現後的重組蛋白在溫度50℃、pH值為4的環境下可測得其最佳活性。Sg-EGV可以專一性的水解非結晶型木質纖維素的β-1,4的鍵結,例如:CMC (carboxymethylcellulose)或是大麥的β-D-glucan。在測試熱穩定的實驗中,將Sg-EGV放在60℃下,6小時,它的活性還保有原本的60%。在耐酸鹼的穩定上,蛋白可以穩定的存在介於pH 3到10之間。有一些研究指出,金屬二價離子可以提高纖維素酶的作用活性,Sg-EGV在有鈷和錳離子存在下,可以提高50%以上的活性。由厭氧環境中找到適合在酸性下作用的纖維水解蛋白,對於生質酒精的發展有一定的助益。
Cellulose and hemicelluloses comprise approximately 50 to 60% (w/w) of plant cell walls and are considered as the major components of the biomass. Bioconversion of these two components to fermentable sugars by celluases has become increasingly important, due to the potential for production of bio-energy, such as ethanol, butanol and other hydrocarbon biofuels. These so called renewable energies could significantly reduce fossil fuel consumption. Anaerobic microbes living in the rumen of herbivores possess diverse cellulase activities and represent potential sources of cellulases. In this study, a bacterium that exhibited strong cellulase activity on Congo red staining plate was isolated from the rumen of a Nubian Goat. Based on the 16S rRNA sequence, this bacterium was identified as Streptococcus sp. Streptococci are non-motile, gram-positive, non-sporeforming bacteria. By culturing this bacterium in the medium containing agricultural residues, high cellulase activity could be detected. The cellulase activity of crude protein was further confirmed by a CMC-zymographic analysis. Primer pair was then designed based on the Streptococcus gallolyticus genomic sequence to obtain endocellulase gene using PCR method. A full-length gene of 1623bp, Sg-EGV, encoding this glycosyl hydrolase of 540 amino acids was isolated. The endo-glucanase belongs to the glucoside hydrolase family V. The recombinant Sg-EGV protein expressed in Escherichia coli showed an optimal activity at 50℃, pH 4. Sg-EGV displayed high specific activity towards β-1,4-linkage of amorphous region of lignocelluloses such as carboxymethylcellulose and β-D-glucan from barley. Furthermore, the recombinant Sg-EGV retained more than 60% of its initial activity after 6 h of incubation at 60°C. Most importantly, the recombinant protein was stable in the pH range of 3-10. Several divalent cations were able to enhance the endo-glucanase activity; specifically, 10 mM CoCl2 and MnCl2 increase the enzyme activity more than 50%. This work identified an acidstable endo-glucanase, Sg-EGV from Streptococcus sp. that might be useful for cellulose hydrolysis for biofuel production.
Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS.(2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium.Appl Environ Microbiol. Jul;77(14):4859-4866.
Béguin P, Aubert JP. (1994) The biological degradation of cellulose. FEMS Microbiol Rev. Jan; 13(1):25-58.
Doi RH. (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci. Mar;1125:267-279.
Dong,W.Y.,Long,Y.C. (2000) Preparation of an MFI-type zeolite membrane on a porous glass disc by substrate selftransformation. Chem. Commun.,1067-1068.
Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX. (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol. May;75(2): 319-328.
Gokhale DV, Patil SG, Bastawde KB.(1991) Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl Biochem Biotechnol. Jul;30(1):99-109
Kamura A, Fukumori F, Horinouchi S, Masaki H, Kudo T, Uozumi T, Horikoshi K, Beppu T.
(1991) Construction and characterization of the chimeric enzymes between the Bacillus subtilis cellulase and an alkalophilic Bacillus cellulase. J Biol Chem. Jan 25;266(3):1579-1983
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. (2006) Bio-ethanol --the fuel of tomorrow from the residues of today. Trends Biotechnol. Dec;24(12): 549-556.
Ko KC, Han Y, Choi JH, Kim GJ, Lee SG, Song JJ. (2011) A novel bifunctional endo-/exo-type cellulase from an anaerobic ruminal bacterium. Appl Microbiol Biotechnol.Mar;89(5):1453-1462.
Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol. Oct;40 (2): 195-201
Lee, S. S., K. J. Shin, W. Y. Kim, J. K. Ha, and I. K. Han. (1999) The rumen ecosystem:as a fountain source of nobel enzymes (Review). Asia-Aus. J. Anim. Sci. 12:988-1001.
Liu J, Liu WD, Zhao XL, Shen WJ, Cao H, Cui ZL. (2011) Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol. Feb;89(4):1083-1092.
Lowe, S. E., M. K. Theodorou, and A. P. Trinci. (1987) Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl. Environ. Microbiol. 53: 1216-1223.
Miron, J., M. T. Yokoyama, and R. Lamed. (1989) Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria. Appl. Microbiol. Biotechnol. 32: 218-222.
MS Ekinci, SI McCrae and HJ Flint (1997) Isolation and overexpression of a gene encoding an extracellular beta- (1,3-1,4)-glucanase from Streptococcus bovis JB1. Appl. Environ. Microbiol., Oct; 63(10):3752-3756
Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG. (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles. May;13(3):425-435.
Rubin EM. (2008) Genomics of cellulosic biofuels. Nature. Aug 14;454(7206):841-845.
Rusniok C, Couvé E, Da Cunha V, El Gana R, Zidane N, Bouchier C, Poyart C, Leclercq R, Trieu-Cuot P, Glaser P.(2010) Genome Sequence of Streptococcus gallolyticus: Insights into Its Adaptation to the Bovine Rumen and Its Ability to Cause Endocarditis. J Bacteriol. Apr; 192(8):2266-2276.
Saha BC. (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol. May; 30(5):279-291.
Schlochtermeier A, Walter S, Schröder J, Moorman M, Schrempf H. (1992) The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol. Dec;6(23):3611-3621
Teng D, Wang JH, Fan Y, Yang YL, Tian ZG, Luo J, Yang GP, Zhang F. (2006) Cloning of beta-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol. Oct;72(4):705-712.
Wood, T. M., C. A. Wilson, S. I. McCrae, and K. N. Joblin. (1986) A highly activity extracellular cellulase from anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiol. Lett. 34: 37-39.
王翰聰,瘤胃細菌纖維及蛋白質分解酵素之生產與利用,國立台灣大學畜產學研究所博士論文,2004。
朱冠穎,白蟻腸道細菌 Clostridium xylanolyticum Ter3 之分離及其糖化纖維素與產氫活性分析,國立中興大學生命科學系碩士學位論文,2007。
黃啟裕,纖維素產氫技術在生質能源之發展,農業生技產業季刊,2008。
陳建孝、林畢修平,纖維酒精製程簡介與未來展望,35期永續產業發展雙月刊 綠色能源發展,2007。