| 研究生: |
顏辰哲 Yen, Chen-Che |
|---|---|
| 論文名稱: |
非侵入式光學穿戴型量測裝置量測人體血紅素與運動的變化關係 Development of wearable diffuse reflectance spectroscopy system for noninvasive optical measurement of hemoglobin during exercising |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 漫反射光譜法 、皮膚光學參數 、吸收散射係數 、穿戴式系統 、微型光譜儀 、皮膚血液 、運動生理 |
| 外文關鍵詞: | Diffuse reflectance spectroscopy, Skin optical properties, Miniature spectrometer, Wearable instrument, Hemoglobin, Athletic physiology |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
漫反射光譜學(Diffuse Reflectance Spectroscopy,簡稱DRS)技術,此技術即為一種非侵入式光學量測技術,能夠對人體皮膚組織進行定量分析,提供人們即時的生理資訊做為健康判斷的依據,亦能夠在醫療上作為簡易的診斷以及臨床分析的重要參考指標。由於光子擴散理論的量測距離限制,我們透過蒙地卡羅法建立理論模型數據庫,並訓練人工類神經網路(Artificial Neural Network ,ANN)建立對應的演算法,將我們漫反射光譜量測到的人體光譜計算為吸收係數(absorption coefficient,μ_a)與散射係數(scattering coefficient,μ_s),在將吸收係數透過光譜擬和出人體的血紅素數質。
血液循環在人體中有兩個主要的功能,一是提供身體皮膚組織所需要的營養素並帶走代謝後的產物,二是調節運動中所產生的皮膚溫度變化來進行散熱的功能以調節身體的溫度,因此若能在運動中透過微型化穿戴式光學量測系統監控血紅素這項數質變化及可分析出人體在運動中所發生的各種生理現象來對當次運動進行分析,便能提高運動訓練的效率。
本研究主要分為兩部分,首先將原先實驗室所使用的大型精密平台是量測系統進行微型化,並改良為穿戴式量測系統,透過仿人體之假體與人體驗證此穿戴式裝置的可行性,並與精密平台是做比較,顯示在血紅素以及黑色素的量測結果中趨勢相同。最後於實驗室內進行漸增性負荷運動並透過穿戴式裝置觀察受測者的血紅素變化,從中解釋合理的量測到其血液根據運動生理的變化進而分析出高校的燃脂區間。
In this study, we use a miniature spectrometer (C12880MA), a 400-600nm LED light source and spatially resolved diffuse reflectance spectroscopy (SRDRS) to development a noninvasive wearable measuring instrument with the novel spectral analysis algorithm in order to measure and calculate the optical parameters of the skin. In the spectrum we analyzed, the main chromophores in human skin are oxyhemoglobin, hemoglobin and melanin. First, we verify the feasibility of the algorithm on DRS wearable system when doing calibration on two phantom and compare it with the laboratory's complete measurement system. The results show that the algorithm is work on both system. The second part, we measured 4 position on human skin. The results show that the trend of hemoglobin and melanin is same between laboratory's complete measurement system and DRS wearable system. Final, we measured 6 subject’s hemoglobin by doing incremental exercise. Find the correlation between human skin hemoglobin and skin temperature, also monitoring heart rate and muscle hemoglobin during exercise. The results show that skin hemoglobin have high correlation with skin thermoregulation, and skin hemoglobin is also affected by heart rate and skin vasoconstriction with other circulatory adjustments to maintain muscle perfusion.
1. Doornbos, R.M., Lang, R.,Aalders, M. C.,Cross, F. W.,Sterenborg, H. J., The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol, 1999. 44(4): p. 967-81.
2. Tseng, S.H., Grant, A.,Durkin, A. J., In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy. J Biomed Opt, 2008. 13(1): p. 014016.
3. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation, in Journal of Biomedical Optics 16(9), 097003 2011.
4. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy, in Phys Med Biol. 1999.
5. Farrell, T.J., Patterson, M. S.,Wilson, B., A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys, 1992. 19(4): p. 879-88.
6. Tseng, S.H., Hayakawa, C.,Spanier, J.,Durkin, A. J., Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations. J Biomed Opt, 2009. 14(5): p. 054043.
7. Tuan H Pham, O.C., Joshua B Fishkin, Eric Anderson, Bruce J Tromberg., Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Review of Scientific Instruments, 2000: p. 71(6):2500–2513,.
8. Matcher, S.J., Cope, M.,Delpy, D. T., In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl Opt, 1997. 36(1): p. 386-96.
9. Tanaka, H., K.D. Monahan, and D.R. Seals, Age-predicted maximal heart rate revisited. J Am Coll Cardiol, 2001. 37(1): p. 153-6.
10. Automated Fitness Level (VO2max) Estimation with Heart Rate and Speed Data. 2014.
11. Baechle, T.R., et al., Essentials of strength training and conditioning. 2008, Champaign, IL: Human Kinetics.
12. Farzam, P., Z. Starkweather, and M.A. Franceschini, Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiol Rep, 2018. 6(7): p. e13664.
13. Joyner, M.J. and D.P. Casey, Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev, 2015. 95(2): p. 549-601.
14. Yu, G., et al., Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies. J Biomed Opt, 2005. 10(2): p. 024027.
15. Simmons, G.H., et al., Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol, 2011. 96(9): p. 822-8.
16. Guyton, A. Human Physiology and Mechanisms of Disease. 1982.
17. 黎俊彥;龍田種, 運動與皮膚血流的控制對運動表現的影響. 華體育季刊, 1996: p. 98-105.
18. De Blasi, R.A., et al., Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol (1985), 1994. 76(3): p. 1388-93.
19. Kellogg, D.L., In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. Journal of Applied Physiology, 2006. 100(5): p. 1709-1718.
20. Smolander, J., et al., Skin blood flow during incremental exercise in a thermoneutral and a hot dry environment. European Journal of Applied Physiology and Occupational Physiology, 1987. 56(3): p. 273-280.
21. Johnson Jm Fau - Park, M.K. and M.K. Park, Effect of heat stress on cutaneous vascular responses to the initiation of exercise. (0161-7567 (Print)).
22. Kenney, W.L., J.H. Wilmore, and D.L. Costill, Physiology of Sport and Exercise. 2015: Human Kinetics, Incorporated.
23. 包爾斯, 郝利, and 林正常, 運動生理學 : 體適能與運動表現的理論與應用. 二版 ed. 2017: 麥格羅希爾出版發行.p. 119-130
24. Monte Carlo Modeling of Photon Transport in Biological Tissue, in Biomedical Optics. p. 37-65.
25. Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995. 47(2): p. 131-146.
26. Chen, Y.-W. and S.-H. Tseng, Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties. Biomedical Optics Express, 2015. 6(3): p. 747-760.
27. Hsu, C.-K., et al., Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy. Biomedical Optics Express, 2015. 6(2): p. 390-404.
28. Steiner, T., T. Maier, and J.P. Wehrlin, Effect of Endurance Training on Hemoglobin Mass and V˙O2max in Male Adolescent Athletes. Medicine and science in sports and exercise, 2019. 51(5): p. 912-919.
29. Ho, C.W., et al., Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol (1985), 1997. 82(4): p. 1126-35.