簡易檢索 / 詳目顯示

研究生: 林志謀
Lin, Chih-Mou
論文名稱: 矽含量對矽化鎢閘極電極性質及功函數的影響之特性研究
The Influence of Si Concentration on the Material Characteristics, Electric Properties and Work Function of W1-xSix
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 149
中文關鍵詞: 閘極電極功函數矽化鎢
外文關鍵詞: Gate electrode, Work function, Tungsten silicide
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著摩爾定律的推進,元件必需微縮以達到更高的堆疊密度、更快的運作速度以及更節省能源。但在微縮的過程中遇到了諸多問題例如多晶矽的摻雜硼原子因熱處理穿過二氧化矽介電層進入通道影響電性表現、二氧化矽的厚度太薄無法有效抵擋直接穿遂的漏電流造成待機時能源損耗,且當二氧化矽的厚度小至某個程度時,多晶矽的空乏區將會產生明顯作用降低整體電容。為克服以上問題,多晶矽閘極與二氧化矽介電層需以金屬閘極與高介電常數材料取代之。本研究主要探討鎢-矽薄膜(W1-xSix)閘極電極中矽含量的改變對其功函數的影響。實驗使用共濺鍍法,製作W1-xSix薄膜,觀察薄膜的材料性質、電性表現及功函數隨矽含量增加的改變情況,並討論功函數、電表現性與材料性質之間的關係。本實驗分成二部份:
    第一部份研究中,將W1-xSix薄膜製備在二氧化矽上,觀察W1-xSix薄膜本身的特性(第4章到第6章)。第4章重點在於研究W1-xSix薄膜的材料特性,觀察矽含量對於W1-xSix薄膜元素比例、結晶結構、化學鍵結性質及電阻率的影響。第5章的實驗研究當矽含量較低(Si < 14 atomic%),鎢仍維持金屬相且矽原子仍以雜質原子的型式存在於鎢金屬中時,材料性質與電性表現之間的關聯性。吾人利用鎢靶(W)與矽靶(Si)共濺鍍的方法,將W0.90Si0.10 與 W0.86Si0.14薄膜沈積在SiO2/Si基板上,製作成金屬-氧化物-半導體(Metal-Oxide-Semiconductor, MOS)電容器;在薄膜沈積完成後,試片將於700 oC的氮氣(N2)中進行熱處理。從低掠角X光繞射的結果中發現,在W1-xSix薄膜中只有body-centered-cubic-W (bcc-W)及/或β-W兩相被觀察到,並無矽化物的相存在,然而鎢的晶格常數隨著矽含量的增加而增加。初鍍W0.90Si0.10與W0.86Si0.14薄膜的功函數分別為4.57 eV及4.47 eV,在經過700 oC熱處理後,其功函數改變為4.52 eV及4.38 eV。接著在第6章,進一步提高W1-xSix薄膜中的矽含量,若將W1-xSix薄膜中的矽含量提高至介於30-74 atomic %時,當試片在真空環境底下經過900 oC熱處理後,則可以在薄膜中觀察到矽化鎢(Tungsten silicide)的化合物結晶相出現;在幾乎為計量比的情況下,900 oC 熱處理後的W0.64Si0.36與W0.31Si0.69薄膜會形成W5Si3與WSi2相,而矽含量位於此兩薄膜中間的W0.44Si0.56薄膜則表現出W5Si3與WSi2兩相混合的結構;對於鎢含量較多的W0.70Si0.30薄膜而言,則形成W5Si3相加上微量的bcc-W;但另一方面而言,對於矽含量更高的W0.26Si0.74薄膜而言,則幾乎與W0.31Si0.69薄膜一樣,只表現出WSi2相。而對於經過900 oC 熱處理後的W0.70Si0.30,W0.64Si0.36,W0.44Si0.56,W0.31Si0.69與W0.26Si0.74薄膜,其功函數分別為4.34,4.31,4.61,4.76與4.72 eV。
    本實驗的第二部份(第7章)則將W1-xSix薄膜製備在HfO2上,觀察W1-xSix/HfO2疊層結構在經過高溫熱處理後其界面特性與電性質的表現,並研究其關連性。在本章中,仍然是利用共濺鍍法,將W0.64Si0.36與W0.31Si0.69薄膜沈積在HfO2高介電常數介電層上製作成MOS電容器。在各層薄膜均沈積完成後,將試片進行900 oC的熱處理處理以使W0.64Si0.36與W0.31Si0.69轉變為矽化鎢結晶(分別為W5Si3與WSi2)結構。另外同時也製備了以W為電極的電容器作為對照。W0.64Si0.36與W0.31Si0.69在經過900 oC的熱處理處理後,在穿透式電子顯微鏡的影像中觀察到一層非晶態,類似二氧化矽(SiO2-like)的中界層在W1-xSix與HfO2之間形成,然而,其中的氧化層電荷(Oxide charges)及界面態(Interface states)在經過熱處理後呈現減少的趨勢。初鍍的W,W0.64Si0.36與W0.31Si0.69分別表現出功函數4.55,4.59與4.63 eV;在經過900 oC熱處理後,其功函數轉變為4.6,4.4與4.74 eV。在W的系統,不論是初製備或是經熱處理的試片,均表現出類似的功函數,推測是為費米能階釘札(Fermi level pining)的現象;在W0.64Si0.36與W0.31Si0.69中,在經過900 oC熱處理後,費米能階釘札的現象解除了,但W系統中仍有費米能階釘札的現象。推測此一費米能階釘札解除的現象是因為類二氧化矽的中界層在HfO2介電層與W1-xSix電極之間形成所造成,且同時也造成了等效氧化層厚度(Equivalent oxide thickness, EOT)的增加。最後吾人發現,在W0.31Si0.69與HfO2之間插入一層2 nm的WNx,除了可以抑制EOT的增加外,W0.31Si0.69仍可以主導功函數的表現。

    To follow Moore』s Law, the device should be shrinkaged to reach higher device density, faster operation speed and lower power comsuption. However, many problems are encountered while scaling. For exemple, the SiO2 is too thin to avoide the the penetration of dopant boron from poly-Si after annealing and the high leakage current. In addition, the influence of depletion of poly-Si gate on the total gate capacitance becomes appearent. To overcome these problems, the poly-Si gate and SiO2 dielectric should be replaced by metal gate electrodes and high-k dielectrics.
    In this study, the material characteristics, work functions and electric properties of W1-xSix film as gate electrode with various Si concentrations fabricated by co-sputtering are investigated. The correlation between material characteristics, work function and electric properties are discussed. This study includes two parts.
    In the first part (Chapter 4 through 6), W1-xSix films are deposited onto SiO2 to examine the material properties of W1-xSix film itself. In Chapter 4, the influences of Si concentration on lattice, chemical bonding and resistivity of W1-xSix are studied. In Chapter 5, W1-xSix with the Si concentration lower than 14 at.% (in which, the W1-xSix still remains in tungsten crystalline) are selected to measure its electric properties and work function. W0.90Si0.10 and W0.86Si0.14 films are deposited on SiO2/Si substrates by co-sputtering from W and Si targets to form metal-oxide-semiconductor (MOS) capacitors. After deposition, the samples are subject to a thermal anneal at 700 oC in flowing N2 ambient. Only body-centered-cubic-W (bcc-W) and/or β-W are present in the W1-xSix films and no tungsten silicide phase is found. However, the lattice constant of W matrix is changed due to adding Si and annealing treatment. Work functions of as-deposited W0.90Si0.10 and W0.86Si0.14 are 4.57 eV and 4.47 eV, respectively. After annealing at 700 oC, the work functions of W0.90Si0.10 and W0.86Si0.14 become 4.52 eV and 4.38 eV, respectively. The connection between the work functions and material characteristics of W1-xSix is discussed.
    In Chapter 6, the silicon concentration of W1-xSix is rised to 30-74 at.%. W1-xSix with continuous increase in Si content ranging from 30 to 74 at.%. The films are deposited on SiO2/Si substrates by co-sputtering from W and Si targets as well. After deposition, the samples are subject to a thermal annealing at 900 oC to form crystalline silicide phases. With their almost stoichiometric compositions, 900 oC-annealed W0.64Si0.36 and W0.31Si0.69 exhibit W5Si3 and WSi2 phases, respectively, while W0.44Si0.56 displays mixed phases of W5Si3 and WSi2. With excess in W, W0.70Si0.30 film exhibits W5Si3 phase with a trace of bcc-W. On the other hand, W0.26Si0.74 containing excess in Si shows WSi2 phase of similar crystallinity to that of W0.31Si0.69. Work functions of 900 oC-annealed W0.70Si0.30, W0.64Si0.36, W0.44Si0.56, W0.31Si0.69, and W0.26Si0.74 are extracted from the plot of flat-band voltage vs. SiO2 thickness of the related MOS capacitors and the values are 4.34, 4.31, 4.61, 4.76, and 4.72 eV, respectively. It is deduced that work function of W1-xSix is mainly related with the phases. Their connection is discussed.
    In the second part (Chapter 7), W0.64Si0.36 and W0.31Si0.69 films are deposited onto HfO2/SiO2 by co-sputtering from W and Si targets to fabricate the MOS capacitors. After deposition, the samples are subject to a thermal annealing at 900 oC to form crystalline tungsten silicide phases. The MOS capacitor with W gate electrode is also prepared for comparison. An amorphous SiO2-like interlayer is observed from high-resolution transmission electron microscope between tungsten silicides and HfO2 after annealing at 900 oC. However, oxide charges and interface states decrease after annealing at 900 oC. The work function of as-deposited W, W0.64Si0.36, and W0.31Si0.69 are 4.55, 4.59, 4.63 eV, respectively. After annealing at 900 oC, the work functions become 4.6, 4.4, and 4.74 eV, respectively. The similar work function values of as-fabricated samples are indicative of Fermi level pinning. The pinning of Fermi level for W1-xSix gate electrodes is released after annealing at 900 oC while the work function of 900 oC-annealed W is still pinned at 4.6 eV. It is deduced that the elimination of Fermi level pinning effect of W1-xSix electrodes on HfO2 is mainly related to the formation of SiO2-like interlayer. Finally, a WNx layer with 2 nm in thickness is inserted between W0.31Si0.69 and HfO2. It is found that the thin WNx efficiently suppress the formation of SiO2-like interlayer and the W0.31Si0.69 still can dominate the work function.

    第1章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 研究方法 4 第2章 理論基礎 5 2-1 互補式金-氧-半場效電晶體簡介 6 2-2 多晶矽閘極與二氧化矽介電層在微縮過程中面臨的問題 10 2-3 金屬閘極電極之相關文獻探討 14 2-4 高介電常數絕緣層材料相關文獻探討 18 2-5 金屬閘極與高介電絕緣層材料間界面特性對於電性的影響 23 2-5.1 本質界面態 23 2-5.2 異質界面態 24 2-5.3 界面偶極 25 2-5.4 雜質原子的摻雜 26 2-5.5 其他影響MOS電容器電性的因素 27 2-6 矽化鵭特性及相關文獻探討 31 2-7 功函數 35 第3章 實驗方法與步驟 39 3-1 實驗材料 39 3-1.1 靶材介紹 39 3-1.2 基材介紹 39 3-1.3 濺鍍及熱處理中使用氣氛 39 3-1.4 實驗相關藥品與耗材 40 3-2 實驗設備 41 3-2.1 薄膜沈積系統介紹 41 3-2.2 熱處理設備 43 3-2.2.1 氣氛退火爐介紹 43 3-2.2.2 真空退火爐介紹 43 3-3 實驗流程 45 3-3.1 基板清洗 45 3-3.2 二氧化矽(SiO2)薄膜製備 45 3-3.3 鵭-矽(W1-xSix)薄膜製備 46 3-3.4 氮化鎢(WNx)薄膜製備 47 3-3.5 二氧化鉿(HfO2)薄膜製備 47 3-3.6 MOS電容器製作 48 3-3.7 熱處理製程 48 3-4 分析儀器 51 3-4.1 表面粗度儀 51 3-4.2 拉賽福背向散射分析儀 52 3-4.3 X光繞射儀 53 3-4.4 低掠角X光繞射儀 54 3-4.5 X光光電子能譜 55 3-4.6 穿透式電子電顯微鏡 56 3-4.7 薄膜電阻率量測 57 3-4.8 電感、電容、電阻計量儀 58 3-4.9 微微安培計量儀 59 第4章 W1-xSix薄膜成份、晶體結構與化學鍵結分析 63 4-1 W1-xSix薄膜成份鑑定 63 4-2 晶體結構鑑定 69 4-2.1 利用GIAXRD觀察W1-xSix晶體結構 70 4-2.1.1 初鍍W1-xSix/SiO2 70 4-2.1.2 700 oC熱處理W1-xSix/SiO2 73 4-2.1.3 900 oC熱處理W1-xSix/SiO2 77 4-2.2 利用-2 XRD觀察W1-xSix/SiO2晶體結構 79 4-3 W1-xSix薄膜化學鍵結 81 4-3.1 初鍍矽-鵭薄膜化學鍵結分析 81 4-3.2 900 oC熱處理矽-鵭薄膜化學鍵結 84 4-4 鎢-矽薄膜電阻率變化 86 4-5 總結 88 第5章 少量矽原子摻雜對鎢金屬功函數的影響(Si <14 at.%) 89 5-1 微量Si元素對鎢-矽薄膜 XPS 的影響 89 5-2 鎢-矽薄膜之電容-電壓曲線 92 5-3 鎢-矽薄膜的功函數表現 94 5-4 總結 98 第6章 晶體結構對W1-xSix/SiO2 (30 at.% ≦ x ≦ 76 at.%)功函數的影響 99 6-1 矽化鎢薄膜微結構影像觀察 99 6-2 矽化鎢薄膜之電流-電壓特性表現 103 6-3 矽化鎢薄膜電容-電壓曲線的特性 105 6-4 矽化鎢薄膜功函數的變化 108 6-5 總結 111 第7章 高溫熱處理對於W1-xSix/HfO2界面特性及W1-xSix功函數的影響 113 7-1 氧化鉿薄膜成份鑑定 114 7-2 利用GIAXRD觀察900 oC熱處理W1-xSix/HfO2晶體結構 116 7-3 利用HRTEM觀察熱處理後W1-xSix/HfO2界面微結構 118 7-4 經900 oC熱處理之W1-xSix/HfO2之化學鍵結縱深分析 121 7-5 以W1-xSix/HfO2疊層為MOS電容器之電容-電壓曲線 125 7-6 高溫熱處理對於W1-xSix/HfO2功函數的影響 127 7-7 利用插入2 nm WNx抑制EOT的增加 130 7-8 總結 133 第8章 結論 135 參考文獻 137

    [1] T. N. Nguyen and J. D. Plummer, "Physical mechanisms responsible for short channel effects in MOS devices," IEEE IEDM Tech. Dig., vol. 27, p. 596, 1981.
    [2] The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 2006), Front End Processes Section http://www.itrs.net/about.html.
    [3] F. Arnaud, J. Liu, Y. M. Lee, K. Y. Lim, S. Kohler, J. Chen, B. K. Moon, C. W. Lai, M. Lipinski, L. Sang, F. Guarin, C. Hobbs, P. Ferreira, K. Ohuchi, J. Li, H. Zhuang, P. Mora, Q. Zhang, D. R. Nair, D. H. Lee, K. K. Chan, S. Satadru, S. Yang, J. Koshy, W. Hayter, M. Zaleski, D. V. Coolbaugh, H. W. Kim, Y. C. Ee, J. Sudijono, A. Thean, M. Sherony, S. Samavedam, M. Khare, C. Goldberg, and A. Steegen, "32nm General Purpose Bulk CMOS Technology for High Performance Applications at Low Voltage," IEEE IEDM Tech. Dig., p. 633, 2008.
    [4] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, "A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films," IEEE IEDM Tech. Dig., p. 213, 2004.
    [5] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, "Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement," IEEE IEDM Tech. Dig., p. 433, 2001.
    [6] B. H. Lee, J. Oh, H. H. Tseng, R. Jammy, and H. Huff, "Gate stack technology for nanoscale devices," Mater. Today, vol. 9, p. 32, 2006.
    [7] S. M. Sze, Physics of Semiconductor. New York: Wiley, 1981.
    [8] Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, and P. K. Ko, "Suppression of boron penetration in P+ poly-Si gate pMOS's Uning Low- Temperature gate-oxide N2O anneal," IEEE Electron Device Lett. , vol. 15, p. 109, 1994.
    [9] The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 2004 Update) http://www.itrs.net/about.html.
    [10] S.-H. Lo, D. Buchanan, and Y. Taur, "Modeling And Characterization Of N+- And P+-polysilicon-gated Ultra Thin Oxides (21-26 Å)," Symp. VLSI Technol., p. 149, 1997.
    [11] S. Guha, E. Gusev, M. Copel, L.-A. Ragnarsson, and D. A. Buchanan, "Compatibility Challenges for High-k Materials Integration into CMOS Technology " MRS Bulletin, vol. Mar., p. 226, 2002.
    [12] J. D. Plummer, M. Deal, and P. B. Griffin, Silicon VLSI technology :Fundamentals, Practice and Modeling. Upper Saddle River, NJ: Prentice Hall, 2000.
    [13] H. B. Michaelson, "The work function of the elements and its periodicity," J. Appl. Phys., vol. 48, p. 4729, 1977.
    [14] S. Zafar, C. Cabral Jr., R. Amos, and A. Callegari, "A method for measuring barrier heights, metal work functions and fixed charge densities in metal/SiO2/Si capacitors," Appl. Phys. Lett., vol. 80, p. 4858, 2002.
    [15] D. Gu and S. K. Dey, "Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2," Appl. Phys. Lett., vol. 89, p. 082907, 2006.
    [16] C. D. Gelatt Jr. and H. Ehrenreich, "Charge transfer in alloys: AgAu," Phys. Rev. B, vol. 10, p. 398, 1974.
    [17] P.-C. Jiang, Y.-S. Lai, and J. S. Chen, "Dependence of crystal structure and work function of WNx films on the nitrogen content," Appl. Phys. Lett., vol. 89, p. 122107, 2006.
    [18] L. J. Chen, Silicide technology for integrated circuits. London: Institution of Electrical Engineers, 2004.
    [19] J. A. Kittl, M. A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K. G. Anil, C. Vrancken, M. J. H. v. Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, "Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates," IEEE Electron Device Lett. , vol. 27, p. 34, 2006.
    [20] Y. Tsuchiya, M. Yoshiki, A. Kinoshita, M. Koyama, J. Koga, M. Ogawa, and S. Zaima, "Physical mechanism of effective work function modulation caused by impurity segregation at Ni silicide/SiO2 interfaces," J. Appl. Phys., vol. 102, p. 104504, 2007.
    [21] Y. Tsuchiya, M. Yoshiki, A. Kaneko, S. Inumiya, T. Saito, K. Nakajima, T. Aoyama, J. Koga, A. Nishiyama, and M. Koyama, "Feasible Integration Scheme for Dual Work Function FUSI/HfSiON Gate Stacks with Selective Metal Pile-up to nMOSFET," IEDM Tech. Dig., p. 519, 2007.
    [22] H.-C. Wen, P. Majhi, K. Choi, C. S. Park, H. N. Alshareef, H. R. Harris, H. Luan, H. Niimi, H.-B. Park, G. Bersuker, P. S. Lysaght, D.-L. Kwong, S. C. Song, B. H. Lee, and R. Jammy, "Decoupling the Fermi-level pinning effect and intrinsic limitations on p-type effective work function metal electrodes," Microelectron. Eng., vol. 85, p. 2, 2008.
    [23] M. E. Grubbs, M. Deal, Y. Nishi, and B. M. Clemens, "The Effect of Oxygen on the Work Function of Tungsten Gate Electrodes in MOS Devices," IEEE Electron Device Lett., vol. 30, p. 925, 2009.
    [24] A. A. Knizhnik, A. A. Safonov, I. M. Iskandarova, A. A. Bagatur』yants, B. V. Potapkin, L. R. C. Fonseca, and M. W. Stoker, "First-principles investigation of the WC/HfO2 interface properties," J. Appl. Phys., vol. 99, p. 084104, 2006.
    [25] A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, "Structural and electronic properties of WC," Phys. Rev. B, vol. 38, p. 9483, 1988.
    [26] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kurnar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okom-Schmidt, C. D'Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.-A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, "Ultrathin high-K gate stacks for advanced CMOS devices," IEDM Tech. Dig., p. 451, 2001.
    [27] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," J. Appl. Phys., vol. 89, p. 5243, 2001.
    [28] D. G. Schlom and J. H. Haeni, "A thermodynamic approach to selecting alternative gate dielectrics," MRS Bulletin, vol. Mar., p. 198, 2002.
    [29] M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, "Application of HfSiON as a gate dielectric material," Appl. Phys. Lett., vol. 80, p. 3183, 2002.
    [30] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, "Field effect transistors with SrTiO3 gate dielectric on Si," Appl. Phys. Lett. , vol. 76, p. 1324, 2000.
    [31] S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng, and W. K. Choi, "Crystalline zirconia oxide on silicon as alternative gate dielectrics," Appl. Phys. Lett., vol. 78, p. 1604, 2001.
    [32] S. B. Kim, S. L. Brown, S. M. Rossnagel, J. Bruley, M. Copel, M. J. P. Hopstaken, V. Narayanan, and M. M. Frank, "Oxygen migration in TiO2-based higher-k gate stacks," J. Appl. Phys., vol. 107, p. 054102, 2010.
    [33] K. Iwamoto, Y. Kamimuta, A. Ogawa, Y. Watanabe, S. Migita, W. Mizubayashi, Y. Morita, M. Takahashi, H. Ota, T. Nabatame, and A. Toriumi, "Experimental evidence for the flatband voltage shift of high-k metal-oxide-semiconductor devices due to the dipole formation at the high-k/SiO2 interface," Appl. Phys. Lett., vol. 92, p. 132907, 2008.
    [34] K. Kita and A. Toriumi, "Origin of electric dipoles formed at high-k/SiO2 interface," Appl. Phys. Lett., vol. 94, p. 132902, 2009.
    [35] C.-H. Lai, L.-C. Hu, H.-M. Lee, L.-J. Do, and Y.-C. King, "New stack gate insulator structure strongly reduces FIBL effect," Symp. VLSI Technol., p. 216, 2001.
    [36] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, "Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density " Appl. Phys. Lett., vol. 94, p. 183102, 2009.
    [37] Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, "Study of La-Induced Flat Band Voltage Shift in Metal/HfLaOx/SiO2/Si Capacitors," Jpn. J. Appl. Phys., Part 1, vol. 46, p. 7251, 2007.
    [38] A. Fet, V. Häublein, A. J. Bauer, H. Ryssel, and L. Frey, "Effective work function tuning in high-k dielectric metal-oxidesemiconductor stacks by fluorine and lanthanide doping," Appl. Phys. Lett., vol. 96, p. 053506, 2010.
    [39] S. Toyoda, H. Kamada, T. Tanimura, H. Kumigashira, M. Oshima, T. Ohtsuka, Y. Hata, and M. Niwa, "Annealing effects of in-depth profile and band discontinuity in TiN/LaO/HfSiO/SiO2 /Si gate stack structure studied by angle-resolved photoemission spectroscopy from backside," Appl. Phys. Lett., vol. 96, p. 042905, 2010.
    [40] M. Jo, S. Kim, J. Lee, S. Jung, J.-B. Park, H.-S. Jung, R. Choi, and H. Hwang, "Characterization of fast charge trapping in bias temperature instability in metal-oxide-semiconductor field effect transistor with high dielectric constant," Appl. Phys. Lett., vol. 96, p. 142110, 2010.
    [41] A. Fet, V. Häublein, A. J. Bauer, H. Ryssel, and L. Frey, "Modeling of the effective work function instability in metal/high-k dielectric stacks," Appl. Phys. Lett., vol. 107, p. 124514, 2010.
    [42] C. Choi and J. C. Lee, "Scaling equivalent oxide thickness with flat band voltage (VFb)modulation using in situ Ti and Hf interposed in a metal/high-k gate stack," J. Appl. Phys., vol. 108, p. 064107, 2010.
    [43] T. Ando, M. Copel, J. Bruley, M. M. Frank, H. Watanabe, and V. Narayanan, "Physical origins of mobility degradation in extremely scaled SiO2 /HfO2 gate stacks with La and Al induced dipoles," Appl. Phys. Lett., vol. 96, p. 132904, 2010.
    [44] H. Takahashi, H. Minakata, Y. Morisaki, S. Xiao, M. Nakabayashi, K. Nishigaya, T. Sakoda, K. Ikeda, H. Morioka, N. Tamura, M. Kase, and Y. Nara, "Ti-capping technique as a breakthrough for achieving low threshold voltage, high mobility, and high reliability of pMOSFET with metal gate and high-k dielectrics technologies," IEEE IEDM Tech. Dig., vol. 2009, p. 427, 2009.
    [45] J. K. Schaeffer, C. Capasso, L. R. C. Fonseca, S. Samavedam, D. C. Gilmer, Y. Liang, S. Kalpat, B. Adetutu, H.-H. Tseng, Y. Shiho, A. Demkov, R. Hegde, W. J. Taylor, R. Gregory, J. Jiang, E. Luckowski, M. V. Raymond, K. Moore, D. Triyoso, D. Roan, B. E. White Jr., and P. J. Tobin, "Challenges for the Integration of Metal Gate Electrodes," IEEE IEDM Tech. Dig., p. 287, 2004.
    [46] Y. C. Yeo, T. J. King, and C. Hu, "Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology," J. Appl. Phys., vol. 92, p. 7266, 2002.
    [47] V. Heine, "Theory of Surface States," Phys. Rev., vol. 138, p. A1689, 1965.
    [48] H. Y. Yu, C. Ren, Y.-C. Yeo, J. F. Kang, X. P. Wang, H. H. H. Ma, M.-F. Li, D. S. H. Chan, and D.-L. Kwong, "Fermi Pinning-Induced Thermal Instability of Metal-Gate Work Functions," IEEE Electron Device Lett., vol. 25, p. 337, 2004.
    [49] K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Kohno, T. Chikyo, H. Kitajima, and T. Arikado, "Physics in Fermi Level Pinning at the PolySi/Hf-Based High-k Oxide Interface," Symp. VLSI Technol., p. 108, 2004.
    [50] Y. Akasaka, G. Nakamura, K. Shiraishi, N. Umezawa, K. Yamabe, O. Ogawa, M. Lee, T. Amiaka, T. Kasuya, H. Watanabe, T. C. Whikyo, F. Ootsuka, Y. Nara, and K. Nakamura, "Modified Oxygen Vacancy Induced Fermi Level Pinning Model Extendable to P-Metal Pinning," Jpn. J. Appl. Phys., vol. 45, p. L1289, 2006.
    [51] J. Robertson, O. Sharia, and A. A. Demkov, "Fermi level pinning by defects in HfO2-metal gate stacks," Appl. Phys. Lett., vol. 91, p. 132912, 2007.
    [52] J. Lee, H. Park, H. Choi, M. Hasan, M. Jo, M. Chang, B. H. Lee, C. S. Park, C. Y. Kang, and H. Hwang, "Modulation of TiSiN effective work function using high-pressure postmetallization annealing in dilute oxygen ambient," Appl. Phys. Lett., vol. 92, p. 263505, 2008.
    [53] M. S. Joo, B. J. Cho, N. Balasubramanian, and D.-L. Kwong, "Stoichiometry Dependence of Fermi-Level Pinning in Fully Silicided (FUSI) NiSi Gate on High-K Dielectric," IEEE Electron Device Lett., vol. 26, p. 882, 2005.
    [54] E. Cartier, V. Narayanan, E. P. Gusev, P. Jamison, B. Linder, M. Steen, K. K. Chan, M. Frank, N. Bojarczuk, M. Copel, S. A. Cohen, S. Zafar, A. Callegari, M. Gribelyuk, M. P. Chudzik, C. Cabral Jr., R. Carruthers, C. D』Emic, J. Newbury, D. Lacey, S. Guha, and R. Jammy, "Systematic study of pFET Vt with Hf-based gate stacks with poly-Si and FUSI gates,," VLSI Symp. Tech. Dig., p. 44, 2004.
    [55] J. K. Schaeffer, L. R. C. Fonseca, S. B. Samavedam, Y. Liang, P. J. Tobin, and B. E. White, "Contributions to the effective work function of platinum on hafnium dioxide," Appl. Phys. Lett., vol. 85, p. 1826, 2004.
    [56] K. Shiraishi, Y. Akasaka, Y. Akasaka, Y. Nara, K. Yamada, H. Takeuchi, H. Watanabe, T. Chikyow, and T.-J. K. Liu, "Theory of Fermi Level Pinning of High-k Dielectrics," SISPAD, p. 306, 2006.
    [57] S. C. Song, J. H. Sim, Z. Zhang, S. H. Bae, P. Kirsch, G. Bersuker, and B. H. Lee, "Morphology and Crystallization of Ultrathin HfON (EOT 1nm) with TiN Metal Gate," Electrochem. Solid-State Lett. , vol. 9, p. G77, 2006.
    [58] X. Yu, M. Yu, and C. Zhu, "A Comparative Study of HfTaON/SiO2 and HfON/SiO2 Gate Stacks With TaN Metal Gate for Advanced CMOS Applications," IEEE Trans. Electron Devices vol. 54, p. 284, 2007.
    [59] S. V. Elshocht, U. Weber, T. Conard, V. Kaushik, M. Houssa, S. Hyun, B. Seitzinger, P. Lehnen, M. Schumacher, J. Lindner, M. Caymax, S. D. Gendt, and M. Heyns, "Electrical Characterization of Capacitors with AVD-Deposited Hafnium Silicates as High-k Gate Dielectric," J. Electrochem. Soc., vol. 152, p. F185, 2005.
    [60] M. S. Joo, B. J. Cho, C. C. Yeo, D. S. H. Chan, S. J. Whoang, S. Mathew, L. K. Bera, N. Balasubramanian, and D.-L. Kwong, "Formation of hafnium-aluminum-oxide gate dielectric using single cocktail liquid source in MOCVD process," IEEE Trans. Electron Devices, vol. 50, p. 2088, 2003.
    [61] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-k/Metal Gate Stack and Its MOSFET Characteristics," IEEE Electron Device Lett., vol. 25, p. 408, 2004.
    [62] A. K. Ganguli, S. Gupta, J.-T. Zhao, E. A. Leon-Escamilla, and J. D. Corbett, "Inherent instabilities of some W5Si3-type binary phases with large electropositive metal atoms: Six examples in the Ba-Pb, Ca-Sn-Mg,Cu,Zn, and La-Ga–Al,Zn systems," J. Solid State Chem., vol. 178, p. 2959, 2005.
    [63] S. Itoh and T. Fujiwara, "Surface electronic structure of C11b WSi2," Phys. Rev. B, vol. 45, p. 3685, 1992.
    [64] A. Katagiri, M. Suzuki, and Z.-I. Takehara, "Electrodeposition of Tungsten in ZnBr2-NaBr and ZnCl2-NaCl Melts," J. Electrochem. Soc., vol. 138, p. 767, 1991.
    [65] P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, "Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by RF sputtering," J. Appl. Phys., vol. 44, p. 2545, 1973.
    [66] D. C. Paine, J. C. Bravman, and C. Y. Yang, "Observations of b-tungsten deposited by low pressure chemical vapor deposition," Appl. Phys. Lett., vol. 50, p. 498, 1987.
    [67] F. Mohammadi and K. C. Sarswat, "Porperties of sputtered tungsten silicide for MOS integrated circuit applications," J. Electrochem. Soc., vol. 127, p. 450, 1980.
    [68] K. C. Saraswat and F. Mohammadi, "Work Function of WSi2," IEEE Electron Device Lett. , vol. 1, p. 18, 1980.
    [69] K. Nakajima, H. Nakazawa, K. Sekine, K. Matsuo, T. Saito, T. Katata, K. Suguro, and Y. Tsunashima, "Highly Reliable CVD-WSi Metal Gate Electrode for nMOSFETs," IEEE Trans. Electron Devices, vol. 52, p. 2215, 2005.
    [70] J. S. Byun, B. H. Lee, J.-S. Pork, D.-K. Sohn, S. J. Choi, and J. J. Kim, "Formation of High Conductivity WSi2 Layer and its Characterization as a Gate Electrode," J Electrochem. Soc., vol. 145, p. 3228, 1998.
    [71] M. Y. Tsai, F. M. d'Heurle, C. S. Petersson, and R. W. Johnson, "Properties of tungsten silicide film on polycrystalline silicon," J. Appl. Phys., vol. 52, p. 5350, 1981.
    [72] T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary alloy phase diagrams. Ohio: Materials Park, 1990.
    [73] D. A. Neamen, Semiconductor Physics and Devices Homewood, IL: Irwin, 1992.
    [74] W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry. New York: Academic, 1978.
    [75] B. D. Cullity and S. R. Stock, Elements of X-ray diffraction. New Jersey: Prentice Hall, 2001.
    [76] J. Emsley, The Elements. New York: Oxford, 1989.
    [77] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Physical Electronics Inc., 1995.
    [78] K. Akimoto, "Chemical bonding of W-Si compounds," Appl. Phys. Lett., vol. 41, p. 49, 1982.
    [79] N. Biswas, J. Gurganus, V. Misra, Y. Yang, and S. Stemmer, "Evaluation of nickel and molybdenum silicides for dual gate complementary metal-oxide semiconductor application," Appl. Phys. Lett., vol. 86, p. 022105, 2005.
    [80] A. E.-J. Lim, R. T. P. Lee, C. H. Tung, S. Tripathy, D.-L. Kwong, and Y.-C. Yeo, "Full Silicidation of Silicon Gate Electrodes Using Nickel-Terbium Alloy for MOSFET Applications," J. Electrochem. Soc., vol. 153, p. G337, 2006.
    [81] H. Luan, H. N. Alshareef, P. S. Lysaght, H. R. Harris, H. C. Wen, K. Choi, Y. Senzaki, P. Majhi, and B.-H. Lee, "Evaluation of tantalum silicon alloy systems as gate electrodes," Appl. Phys. Lett., vol. 87, p. 212110, 2005.
    [82] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. New York: Wiley, 1998.
    [83] I. Barin, Thermochemical data of pure substances. New York: VCH, 1995.
    [84] L. M. Terman, "An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes," Solid-State Electron., vol. 5, p. 285, 1962.
    [85] M.-A. Nicolet and S. S. Lau, in: VLSI Electronics: Microstructure Science, N.G. Einspruch and G. B. Larrabee, Editors, Vol. 6, Ch. 6. New York: Academic Press, 1983.
    [86] L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, "Electrical Characterization of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric," IEEE Electron Device Lett., vol. 21, p. 181, 2000.
    [87] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, "Physical and Electrical Characterization of Hafnium Oxide and Hafnium Silicate Sputtered Films," J. Appl. Phys., vol. 90, p. 6466, 2001.
    [88] M. S. Akbar, S. Gopalan, H. J. Cho, K. Onishi, R. Choi, R.Nieh, C. S. Kang, Y. H. Kim, J. Han, S. Krishnan, and J. C. Lee, "High-Performance TaN/HfSiON/Si MOS Structures Prepared by NH3 Post-Deposition Anneal,," Appl. Phys. Lett., vol. 82, p. 1757, 2003.
    [89] M. Kadoshima, K. Akiyama, N. Mise, S. Migita, K. Iwamoto, N. Yasuda, K. Tominaga, M. Ikeda, H. Satake, T. Nabatame, and A. Toriumi, "Silicon-Atom Induced Fermi-Level Pinning of Fully Silicided Platinum Gates on HfO2 Dielectrics," Jpn. J. Appl. Phys., vol. 44, p. 2267, 2005.
    [90] K. Kosky, J. Holsa, and P. Juliet, "Properties of zirconium oxide thin films deposited by pulse reactive magnetron sputtering," Surf. Coat. Tech., vol. 120-121, p. 303, 1999.
    [91] S. Venkataraj, O. Kappertz, H. Weis, R. Srese, R. Jayavel, and M. Wuttig, "Structure and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering," J. Appl. Phys., vol. 92, p. 3599, 2002.
    [92] E. P. Gusev, V. Narayanan, and M. M. Frank, "Advanced high-j dielectric stacks with poly-Si and metal gates: Recent progress and current challenges," IBM J. Res. & Dev., vol. 50, p. 387, 2006.
    [93] Y. H. Kim, C. Cabral Jr., E. P. Gusev, R. Carruthers, L. Gignac, M. Gribelyuk, E. Cartier, S. Zafar, M. Copel, V. Narayanan, J. Newbury, B. Price, J. Acevedo, P. Jamison, B. Linder, W. Natzle, J. Cai, R. Jammy, and M. Ieong, "Systematic Study of Workfunction Engineering and Scavenging Effect Using NiSi Alloy FUSI Metal Gates with Advanced Gate Stacks," IEEE IEDM Tech. Dig., p. 4, 2005.
    [94] Y. Nara, S. Inumiya, S. Kamiyama, and K. Nakamura, "Hf-based High-k Gate Dielectrics - Scalability for hp45 node and beyond," IEEE Nano CMOS p. 132, 2006.
    [95] S. B. Samavedam, J. K. Schaeffer, D. C. Gilmer, V. Dhandapani, P. J. Tobin, J. Mogab, B.-Y. Nguyen, S. Dakshina-Murthy, R. S. Rai, Z.-X. Jiang, R. Martin, M. V. Raymond, M. Zavala, L. B. La, J. A. Smith, and R. B. Gregory, "Evaluation of Candidate Metals for Dual-Metal Gate CMOS with HfO2 Gate Dielectric," Mat. Res. Soc. Symp. Proc., vol. 716, p. B2.5.1, 2002.
    [96] C.-H. Lu, Y.-S. Lai, and J. S. Chen, "Investigation of the Hf-Based Gate Dielectrics Deposited by Reactive Sputtering in Oxygen or Nitrogen Atmosphere," J. Electrochem. Soc., vol. 153, p. F189, 2006.
    [97] H. Kaneko, S. Nishimoto, K. Miyake, and N. Suedomi, "Physical and electrochemichromic properties of rf sputtered tungsten oxide fims," J. Appl. Phys., vol. 59, p. 2526, 1986.
    [98] C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, H.-H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, "Fermi-level pinning at the polysilicon/metal-oxide interface-Part II," IEEE Trans. Electron Devices vol. 51, p. 978, 2004.
    [99] Y.-C. Yeo, P. Ranade, T.-J. King, and C. Hu, "Effects of high-k gate dielectric materials on metal and silicon gate work functions," IEEE Electron Device Lett., vol. 23, p. 342, 2002.
    [100] E. Lipp, M. Eizenberg, M. Czernohorsky, and H. J. Osten, "Effect of oxide structure on the Fermi-level pinning at metal/Gd2O3 interfaces," Appl. Phys. Lett., vol. 93, p. 193513, 2008.
    [101] C.-F. Huang and B.-Y.Tsui, "Investigation of NiSi Fully-Silicided Gate on SiO2 and HfO2 for Applications in Metal-Oxide-Semiconductor Field-Effect Transistors," Jpn. J. Appl. Phys., vol. 45, p. 5702, 2006.
    [102] S. Maîtrejean, S. Allégret, F. Fillot, T. Farjot, B. Guillaumot, and G. Passemard, "Study of Work Function of CVD WSix Thin Film on High-k Eielectric," Mat. Res. Soc. Symp. Proc., vol. 786, p. 285, 2004.
    [103] J. Widiez, M. Vinet, B. Guillaumot, T. Poiroux, D. Lafond, P. Holliger, Weber, V. Barral, B. Previtali, F. Martin, M. Mouis, and S. Deleonibus, "Fully depleted SOI MOSFETs with WSix, metal gate on HfO2 gate dielectric," IEEE Inter. SOI Conf. Proc., p. 161, 2006.
    [104] P.-C. Jiang, C.-K. Yen, and J. S. Chen, "Influence of thickness on the material characteristics of reactively sputtered W2N layer and electrical properties of W/W2N/SiO2/Si capacitors," J. Alloys Compd., vol. 463, p. 522, 2008.
    [105] I.-S. Park, H.-K. Ko, T. Lee, J. Park, D.-K. Choi, J. Ahn, M.-H. Park, and C.-W. Yang, "Work function shift mechanism of metal-gate electrode with Ru/Ti bilayer," Electrochem. Solid-State Lett., vol. 10, p. H63, 2007.
    [106] M. Hasan, H. Park, H. Yang, H. Hwang, H.-S. Jung, and J.-H. Lee, "Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application," Appl. Phys. Lett., vol. 90, p. 103510, 2007.

    下載圖示 校內:2013-11-19公開
    校外:2015-11-12公開
    QR CODE