| 研究生: |
盧郁文 Lu, Yu-Wen |
|---|---|
| 論文名稱: |
高效率流體化床結晶技術除鐵之研究 Study on Iron Removal by High Efficient Fluidized Bed Crystallization Technology |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 鐵氧化物 、除鐵 、流體化床結晶 |
| 外文關鍵詞: | Iron removal, Iron oxide, Fluidized bed crystallization |
| 相關次數: | 點閱:120 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地下水中鐵、錳總是伴隨存在,若無法將其含量經由處理降至限值以下時,將會產生紅水或黑水現象,並沈積而阻塞管線,造成對公共給水、工業用水、適飲性和適用性上之嚴重影響。本研究利用流體化床結晶技術,以20 ppm Fe2+溶液模擬地下水,進行去除地下水中鐵離子的研究,擔體選用常用之矽砂(簡稱Si) 與覆膜鐵氧化物之矽砂(SiG),二種擔體用量均為300 g/L,pH值控制在6~8之間進行批次與連續式實驗。其目的在於:(1)作為錳砂濾池之前處理設備,有效降低濾池負荷,增加錳砂使用壽命(2)回收鐵,使污泥減量(3)覆膜之擔體可作催化劑。
由批次式結果顯示pH6時SiG擔體氧化亞鐵速率較快。使用SiG擔體時總鐵濃度隨pH上升而下降,最高移除率約97%;Si擔體對總鐵移除效果較SiG擔體差約10~20%。批次實驗過程中發現當不控制pH值時,總鐵去除率比有控制時高5~10%。由於地下水常以缺氧狀態存在,因此反應過程中利用曝氣提供飽和溶氧,實驗結果發現曝氣會使除鐵效果降低約10%。除此之外,實驗結果發現,以SiG擔體做處理時,擔體無失活之問題(錳砂有失活之問題,需再生),因此無使用壽命之期限。
連續式實驗pH值操作於6.8~8之間,結果顯示當pH值上升時,對亞鐵皆能完全氧化,但總鐵去除率隨pH上升而下降,因此pH值太高或太低皆不適宜,pH7左右為最佳操作pH值,最佳去除率約為95%。
Iron and manganese are natural constituents of the earth crust and always appear together in the groundwater. If iron and manganese concentration are above the drinking water standard there will produce red or black water, and then deposits and block up pipeline. Both elements will create serious problems in drinking and factory water supplies. Fluidized bed crystallization (FBC) technology is used in this study to remove iron. 3000g/L iron oxide (SiG) or silica (Si) was chosen for the support in the fluidized bed reactor. The pH is controlled from 6 to 8. The first objective of this study is to remove iron in the water. The second one is that the FBC reactor could be used as the equipment before the filtration unit in order to reduce the iron load of the filtration system. The third one is that the support after reaction could be used as catalyst after treatment. Therefore, the lifetime of manganese coating sand used in the filtration system could be increased.
The results of batch experiment show that the oxidization of ferrous iron increases with increasing pH. But, on the contrary, the removal efficiency of the total iron concentration decreases as pH increases. The best total iron removal efficiency by SiG support is about 97% which is 10~20% better than Si support. We also found that the total iron removal efficiency at the condition without pH control is 5~10% better than that with pH control. Due to the absence of oxygen in groundwater, we suppose that the applying of aeration may be much workable to increase the dissolved oxygen and then increase total iron removal efficiency. Contrarily, the results showed the total iron removal efficiency decreases about 10% by aeration. The great advantage of the SiG support using in this system is that it has almost no limitation of lifetime when used in the removal of iron.
The results of continuous experiment ( 6.8< pH <8) show the same tendency as batch one in oxidization of ferrous iron. As the pH increases, almost all ferrous iron will be oxidized. But there is an optimal pH for the total iron removal ratio. Beyond this value, either too high or too low pH decreases the total iron removal ratio. The best operating condition is at pH7 and the maximum total iron removal is about 95%.
Atkinson, R. J., Posner, A. M. and Quirk, J. P., Crystal nucleation in Fe(III) solutions and hydroxide gels, Jour. Inorg. Nucl. Chem., 30, 2371, 1968.
Bailar, J. C., Comprehensive Inorganic Chemistry, Vol.3, Pergamon, Oxford, 1973.
Chou, S. S., Liao, C. C., Perng, S. H., Chang, S. H., Factors influencing the preparation of supported iron oxide in fluidized-bed crystallization, Chemosphere 54, 859–866, 2004.
Dirksen, J. A. and Ring, T. A., Fundamentals of crystallization:kinetic effects on particle size distribution and morphology, Chemical engineering science, 40(10):p.2389-2427, 1991.
Diz, H. R. and Novak, P. E., Fluidized bed for removing iron and acidity from acid mine drainage, J. Environ. Eng. 124(8), 701 – 708, 1998.
Dufour, J., Lopez, L., Formoso, A., Negro, C., Latorre, R., and Lopez – Mateos, F., Mathematical Model of Goethite Synthesis by Oxyprecipitation of Stell Pickling Liquors, The Chemical Engineering Journal, Vol.59, pp.287-291, 1995.
Faust, Samuel D. and Aly, Osman M., Chemistry of water treatment 2nd , Lewis Publishers, Boca Raton London, New York Washington, D.C., Chapter 9 , 1999.
Hardy, W. B., A Preliminary Investigation of the Conditions Which Determine the Stability of Irreversible Hydrosols, Proc. Roy. Soc.(London)66, 110-125, 1900.
Harrison, J. B. & Berkheiser, V. E., Anion interactions with freshly prepared hydrous iron oxides. Clays Clay Min. 30 : 97-102, 1982.
Khan, M. A. and Watts, R. J., Mineral-catalyzed peroxideof tetrachlorethylene Water Air and Soil Pollution, 88, 247-260, 1994.
Kitajima, N., Fukuzumi, S., and Ono, Y., Formation of Superoxide Ion during the Decomposition of Hudrogen Peroxide on Supported Metal Oxides, J. Phys. Chen., Vol.82, pp.1505-1509, 1978.
Kong, S. H. and Watts, R. J., Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere, 37, No.8, 1473-1482, 1998.
Kuma, K., Suzuki, Y., and Matsunaga, K., Solubility and Dissolution Rate of Collidalγ-FeOOH in Seawater, Wat. Res., 27(4), pp.651-657, 1993.
LaMer, V. K., and Healy, T. W., Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface, Rev. Pure App. Chem., 13, 112-132, 1963.
Nooney, M. G., Campbell, A., Murrell, T. S., Lin, X. F., Hossner, L. R., Chusuei, C. C., and Goodman, D. W., Nucleation and Growth of Phosphate on Metal Oxide Thin Films”, Langmuir, 14, pp.2750-2755, 1998.
Packham, R. F., Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts, J. Coll. Sci., 20 , 81-92, 1965.
Pulker, Hans K., Balzers, A. G., Basic Research Lab, Liechtenstein, COATINGS ON GLASS, Thin Films Science and Technology, 484p, 1984.
Ravikumar, J. X. and Gurol, M. D., Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand Environ, Sci Technology, 28, 394-440, 1994.
Ruehrwein, R. A., and Ward, D. W., Mechanism of Clay Aggregation by polyelectrolytes, Soil Science, 73 485-492, 1952.
Santos, A., Barrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M., and Bergaya, F., Catalytic Wet Peroxide Oxidation (CWPO) of Phenol over Mixed (Al-Cu)-Pillared Clays, Environmental Science and Technology, Vol.15, pp.269-274, 1998.
Schulze, H. J., J. Peakt. Chem., (2) 25, 431, 1882.
Schwertmann, U., Gasser, U. and Sticher, H., Chromium for iron substitution in synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
Stookey, L. L., Ferrozine-a new spectrophotometric reagent for iron. Analyt. Chem., 42, 779-781, 1970.
Stumm, W., and Lee, G. F., Oxygenation of Ferrous Iron, Industrial and Engineering Chemistry, 53, 143, 1961.
Stumm, W., and O’Melia, C. R., Stoichiometry of Coagulation, J. Am. Water Works Assoc., 60, 5, 514, 1968.
Schwertmann, U., and Cornell, R. M., Iron Oxides in the Laboratory preparation and characterization, Second, Completely Revised and Extended Edition, WILEY-VCH, New York, 2000.
Schwertmann, U., and Cornell, R. M., The iron oxides : structure, properties, reactions, occurrence and uses, Wiley-VCH, New York, 2003.
Takagi, N., Konno, M. and Kobayashi, T., Method of Producing Hydrated Iron Oxide, US4597958, Mitsui Mining & Smelting Co., JP 1986.
Valentine, R. L., and Wang, H., Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide, J. of Env. Eng., 124(1), pp.31-38, 1998.
Verwey, E. J. W., and Overbeek, J. Th. G., Theory of the Stability of Lyophobic Colloids, Elsevier Scientific Publishing Company, Amsterdam, 1948.
Watts, R. J., Udell, M. D., Monsen, R. M., Use of iron minerals in optimizing the peroxide treatment of contaminated soils Water Environ, Res., 65,839-844, 1993
Weidler, G., Degovics, G., and Laggner, P., Surface Roughness Created by Acidic Dissolution of Synthetic Goethite Monitored with SAXS and N2-Adsorption Isotherms, J. of Colloid and Interface Sci, 197, pp.1-8, 1998.
William, R., Knocke, John E. Van Benschoten, Alternative oxidants for the removal of soluble iron and manganese, publish by the AWWA Research Foundation and American Water Work Association, U.S.A. 1990.
Xue Y., and Traina S. J., Oxidation Kinetics of Co(Ⅱ)-EDTA in Aqueous and Semi-Aqueous Goethite Suspensions, Env. Sci. Tech., 30(6), pp.1975-1981, 1996.
王成財“砷As(V)在水化鐵、鋁氧化物表面吸附特性之研究”成功大學環境工程學系碩士論文 1990
李茂松“流體化床結晶技術在無機廢水處理上應用性研究”中原大學化學系碩士論文 1992
李正得“不同擔體表面處理程序對氧化鐵覆膜催化效能之影響”交通大學環境工程研究所碩士論文 2002
周珊珊、黃志彬、王瓊淑“以顆粒化鐵氫氧化物觸媒催化過氧化氫氧化苯甲酸之研究” 第二十二屆廢水處理技術研討會論文集,pp.210-216,1997
洪再生“流體化床結晶技術回收廢水中重金屬銅之探討”中央大學環境工程研究所碩士論文 1996
陳政澤“流體化床結晶反應槽回收廢水中重金屬鎘之研究”中央大學環境工程研究所碩士論文 1995
許佩瑜“鐵氧化物覆膜擔體催化過氧化氫氧化2-硝基酚之研究”成功大學環境工程研究所碩士論文 2002
黃心琦“氧化鐵覆膜活性碳催化氧化及吸附苯甲酸之研究”交通大學環境工程研究所碩士論文 2002
楊高宏“金瓜石酸礦水中亞鐵氧化行為之研究”台灣大學環境工程學研究所碩士論文 2003
鄭仲凱“氫氧化鐵吸附水中砷之動力與平衡研究”成功大學環境工程研究所碩士論文 2003
賴進興“氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”臺灣大學環境工程研究所博士論文 1995
簡肇成“結合流體化結晶床與薄膜去除水中硬度之研究”淡江大學水資源及環境工程研究所碩士論文 2001
蘇亮誌“鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究”成功大學化學工程研究所碩士論文 2004
江漢全 水質分析 三民書局 臺北市 1996
行政院環境保護署 環境水質監測年報 地下水水質篇 2004
李圭白 地下水除鐵錳 第二版 中國建築出版社 北京 1989
李敏華 水質化學 復漢出版社 臺南市 1992
高肇藩 給水工程 三民書局 臺北巿 1980
高肇藩 工業用水 國土木水利工程學會印行 臺北巿 1988
陳文福 台灣的地下水 遠足文化 臺北縣 2005
楊萬發譯 水及廢水處理化學 茂昌圖書有限公司 臺北巿 2002