簡易檢索 / 詳目顯示

研究生: 陳致宇
Chen, Chih-Yu
論文名稱: 空載光達結合高解析度熱影像於都市戶外熱環境及建築能源評估之應用-以板橋區為例
The application of airborne LiDAR combined with high resolution thermal images in the urban thermal environment and building energy evaluation—a case study in Banqiao district
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 平均輻射溫度光達熱影像熱舒適熱環境微尺度模型都市能耗地圖
外文關鍵詞: mean radiant temperature, LIDAR, thermal comfort, urban surfaces, microscale modeling, energy use map
相關次數: 點閱:140下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市熱島效應的高溫化現象對都市熱環境和戶外熱舒適造成強烈的衝擊,增加空調設備的使用導至能源的耗用量增高。因此評估戶外熱舒適及能源耗用的方法變得很重要。在多個熱舒適指標中,平均輻射溫度(Tmrt)是可量化輻射熱對人體的影響的重要指標。當遇到熱浪來襲時對於如何量化人類的熱負荷,Tmrt相關知識的理解是很重要的。雖然過去的衛星遙測方法可以方便的顯示較大尺度的地理訊息以及地表溫度,但對於較小尺度城市中複雜的輻射特性分佈則因為解析度較低和缺乏建築及植栽垂直分布的資訊,並無法進行準確及迅速的熱舒適預估。因此,衛星遙測方法無法提供都市內生物氣象足夠的相關資訊,限制了對戶外人體熱舒適進行時空分布詳細描述的可能性。過去使用實地調查、抽樣調查及模擬來預估能源的耗用量,但並無法進行大範圍的能源耗用預估。
    為了幫助解決此重要議題,本研究提出一種創新的方法用以預估Tmrt,藉由結合高解析度的空載光達(LiDAR)與近紅外光地表溫度測量(TIR)之遙測技術及地面同步氣候實測,觀察都市熱環境,並以台灣新北市板橋區的高密度開發區作為操作對象。在遙測的部分,採用高解析度空載光達以解析度1m×1m 進行地形及地表物探勘掃描成像的技術,識別並取得建築樓高、總樓地板面積、植栽型態與樹冠冠幅等資訊。熱影像則以解析度0.5m×0.5m,精度0.05度C進行拍攝,取得水平面及垂直面的輻射熱,進一步取得地表溫度和建物表面溫度。而在地表測量上,於地面進行同步的空氣溫度、相對溼度、地表溫度、輻射溫度之量測,並透過經緯度定位用以校正遙測之結果。結合以上三種數據,將可評估和比較用不同的方法所計算出之Tmrt。同時也可了解都市開發因子對都市熱環境及人體生理熱感知之影響。
    分析結果發現,由高解析度熱影像及光達所預測之Tmrt與地表實測資料進行比對呈現高相關性。將板橋區的Tmrt以分布圖形式呈現,可迅速地尋找出都市熱點。此外,結合高解析度空載光達及土地利用屬性所預測之能源耗用與實際值呈現高相關性。因此,採用熱紅外線遙測結合光達技術,將有助於快速且準確地了解都市生物微氣候環境;而結合光達與土地利用屬性,可有助於大面積的能源耗用預估。
    高解析度空載光達與熱紅外線影像在未來對都市熱環境的研究極具發展潛力,尚有許多可應用的地方,如可應用於估算人體熱舒適指標PET、預估之高能耗區與熱點分布之關聯等。

    Urban heat island effect has a strong impact on urban thermal environment and thermal comfort of humans. Although satellite remote sensing can easily show the information of thermal distribution in a large area, there is still lack of accuracy and fast approach to estimate the complex characteristic of the distribution of radiation in urban areas due to the low resolution images of conventional satellite remote sensing and the lack of the information about the vertical surfaces. In order to solve this important issue, the research presents an innovative approach by using the high resolution airborne LiDAR technology combined with thermal infrared remote sensing, and conducting surface measurement simultaneously to observe the urban thermal environment. The Banqiao district in New Taipei City , which is high development, is selected as an survey area. In terms of aerial survey, airborne LiDAR sensors can be used to create a DSM (Digital Surface Model) in high resolution 1m×1m per pixel with scanning imaging technique, so that the building heights, building area, form of planting, and tree crown can be obtained. By combining the three kinds of information through the latitude and longitude, the mean radiant temperature (Tmrt) can be calculated and compared.
    According to the analysis result, the Tmrt estimated by data from thermal imager and LiDAR was compared to the data from ground survey and show high accuracy. Presenting Tmrt and physiologically equivalent temperature (PET) of Banqiao district in the form of maps is useful for identifying hotspots in the city. In addition, the energy use estimated by combination of LiDAR and land use properties have a high correlation to the actual values. Therefore, thermal infrared remote sensing combined with LIDAR technology can improve the accuracy and the understanding of urban bioclimatic conditions in urban thermal environment. of great potential for further development.

    目錄 第一章、 緒論 1 第一節、 研究背景 1 第二節、 研究動機 1 第三節、 研究目的 4 第四節、 研究流程 5 第二章、 文獻回顧 7 第一節、 熱舒適指標相關研究 7 第二節、 熱影像相關研究 8 第三節、 光達相關研究 9 第四節、 能源相關研究 9 第三章、 研究方法 11 第一節、 研究地點與背景 11 第二節、 實測方法 12 第三節、 資料製作方法 18 第四節、 微氣候資料校正 24 第五節、 能源分析方法 25 第六節、 微氣候與能源分析使用軟體 27 第四章、 微氣候結果分析與討論 31 第一節、 天空可視率比較 31 第二節、 陰影分析 33 第三節、 平均輻射溫度模擬結果 35 第四節、 平均輻射溫度分布圖之應用 38 第五節、 平均輻射溫度三維分布模型 39 第六節、 熱舒適指標之比較分析 41 第五章、 能源分析結果與討論 43 第一節、 預估結果與實際結果之比較 43 第二節、 能源耗用地圖 46 第六章、 結論與建議 53 第一節、 結論 53 第二節、 建議 54 參考文獻 55

    1. 郭柏巖(2006),住宅耗電實測解析與評估系統之研究,博士論文,國立成功大學,台南。
    2. 林奉怡(2015)。都市區域建築能源耗用地圖建置方法與應用,碩士論文,國立成功大學,台南。
    3. 甘知潔(2009)。都市街廓用電預測方法之研究,成功大學建築系碩士論文。
    4. 陳介慧(2008)。建築用電密度標準之研究,成功大學建築系碩士論文。
    5. 林憲德、林子平、蔡耀賢(2015)。綠建築評估手冊-基本型,內政部建築研究所。
    6. 劉心蘭,公寓大廈住宅用電調查研究,成功大學建築系碩士論文,2005。
    7. 江師榮(2007)。空載光達與二維數值地形圖的建物特徵自動化匹配研究,成功大學測量及空間資訊學系碩士論文。
    8. 經濟部能源局,能源統計月報,取自http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=MCH&menu_id=142
    9. Aniello, C., Morgan, K., Busbey, A., Newland, L., 1995. Mapping micro-urban heat islands using LANDSAT TM and a GIS. Comput. Geosci. 21, 965–967, 969.
    10. ASHRAE., 2001. ASHRAE Fundamentals Handbook 2001, SI ed. American Society of Heating, Refrigerating, and Air-Conditioning Engineers. Atlanta, GA.
    11. Bowen, Z.H., Waltermire, R.G., 2002. Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography. J. Am. Water Resour. Assoc. 38, 33–41.
    12. Chen, L., Ng, E., An, X.P., Ren, C., He, J., Lee, M., Wang, U., 2012. Sky View Factor Analysis of Street Canyons and its Implications for Intra-Urban Air Temperature Differentials in High-Rise, High-Density Urban Areas of Hong Kong: a GIS-Based Simulation Approach. Int. J. Climatol. 32, 121-136.
    13. Cook, Bruce D., Corp, Lawrence A., Nelson, Ross F., Middleton, Elizabeth M., Morton, Douglas C., McCorkel, Joel T., Masek, Jeffrey G., Ranson, Kenneth J., Ly, Vuong., Montesano, Paul M., 2013. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sens. 5, 4045-4066.
    14. Chen, L.C. & Huang, C.Y., (2009). Detection of Building Model Changes from LIDAR Data and Aerial Imagery. Journal of Photogrammetry and Remote Sensing Volume 14, No.2, June 2009.
    15. Chen, L.C. & Li, T.Y., (2008). Integrating Multi-source Data for the Generation of 3-D Building Models. Journal of Photogrammetry and Remote Sensing Volume 13, No. 3, Sepetmber 2008.
    16. C. Ratti, N. Baker, K. Steemers, Energy consumption and urban texture, Energy and Buildings, 37, 762–776, 2005.
    17. Chowdhury, A. A., Rasul, M. G. and Khan, M. M. K. (2007). Modelling and simulation of building energy consumption: a case study on an institutional building in central Queensland, Australia. Proceedings of 10th International Building Performance Simulation Association (IBPSA) International Conference, Beijing, China, September 3-6, 1916-1923.
    18. Dozier, J., 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 11, 221-229.
    19. Gerber, M. (2014). EnergyPlus Energy Simulation Software. Duluth Journal of Undergraduate Research, 118-120,2014
    20. Höppe P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol. 43:71-5.
    21. Höppe, P., 1999. The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 43, 71-75.
    22. Li, Fuqin., Jackson, Thomas J., Kustas, William P., Schmugge, Thomas J., French, Andrew N., Cosh, Michael H., Bindlish, Rajat., 2004. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 92, 521-534.
    23. Liang, B.P., Li, Y., Chen, K.Z., 2012. A Research on Land Features and Correlation between NDVI and Land Surface Temperature in Guilin City. Remote Sens. Tech. Appli. 27, 429-435.
    24. Lin, T.P., de Dear, R., Hwang, R.L., 2011. Effect of thermal adaptation on seasonal outdoor thermal comfort. Int. J. Climatol. 31, 302-312.
    25. Lin, T.P., Matzarakis, A., 2008. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J Biometeorol. 52, 281-290.
    26. Lo, C.P., Quattrochi, D.A., Luvall, J.C., 1997. Application of Highresolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect. Int. J. Remote Sens. 18, 287-304.
    27. Lee, K. Ok, Medina, M. A. and Sun, X. (2015). Development and verification of an EnergyPlus-based algorithm to predict heat transfer through building walls integrated with phase change materials. Journal of Building Physics, doi: 10.1177/1744259115591252.
    28. Lin, Y.S., & Teo, T.A., (2014). Waveform Analysis and Landcover Classification Using Airborne Full-Waveform Lidar Data. Journal of Photogrammetry and Remote Sensing, Volume19, No2, December 2014, pp. 75-91.
    29. Matzarakis, A., 2012. Linking urban micro scale models - The models RayMan and SkyHelios. 8th International Conference on Urban Climates, Dublin Ireland.
    30. Matzarakis, A., Matuschek, O., 2011. Sky view factor as a parameter in applied climatology – rapid estimation by the SkyHelios model. Meteorol. Z. 21, 1-7.
    31. Matzarakis, A., Röckle, R., Richter, C.-J., Höfl, H.-C., Steinicke, W., Streifeneder, M., Mayer, H., 2008. Planungsrelevante Bewertung des Stadtklimas – Am Beispiel von Freiburg im Breisgau. Gefahrstoffe - Reinhalt. Luf. 68, 334-340.
    32. Matzarakis, A., Rutz, F., Mayer, H., 2007. Modelling radiation fluxes in simple and complex environments - Application of the RayMan model. Int. J Biometeorol. 51, 323-34.
    33. Matzarakis, A., Rutz, F., Mayer, H., 2010. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J Biometeorol. 54, 131-39.
    34. Mayer, H., Höppe, P. R., 1987. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 38, 43-49.
    35. Mcintosh, K., & Krupnik. (2002). A. Integration of laser-derived DSMs and matched Image edges for generating an accurate surface model. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 56, PP.167-176.
    36. Neale, Christopher M.U., Sivarajan, S., Akasheh, O. Z., Jaworowski, C., Heasler, H., 2009. Monitoring geothermal activity in Yellowstone National Park using airborne thermal infrared remote sensing. P. Soc. Photo-Opt. Ins. 7472, 747210.
    37. O’Donohue, D., Mills, S., Bartie, S., Park, P., David, A., 2008. Combined thermal–LiDAR imagery for urban mapping. 23rd International Conference on Image and Vision Computing New Zealand. Christchurch, New Zealand.
    38. Oke, T. R., 1981. Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J. Climatol. 1, 237-254.
    39. Oke, T. R., 1987. Boundary layer climates, second ed. Routledge, London.
    40. Papanastasiou, D.K., Melas, D, Kambezidis, H.D., 2015. Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 152, 4-13.
    41. Price, J., 1983. Estimating surface temperatures from satellite thermal infrared data: a simple formulation for the atmospheric effect. Remote Sens. Environ. 13, 353-361.
    42. Peng, B.S., & Chen, C.T., (2008). Estimating Tree Heights and Leaf Area Index Using Airborne LiDAR Data. Journal of Photogrammetry 100 and Remote Sensing Volume 13, No. 2, March 2008.
    43. P. Steadman, I. Hamilton, S. Evans. (2014) Energy and urban built form: an empirical and statistical approach. Building Research & Information, Vol. 42, No. 1, 17–31.
    44. Qin, M.and Yang, J. (2015). Evaluation of different thermal models in EnergyPlus for calculating moisture effects on building energy consumption in different climate conditions. Building Simulation, 9(1), 15-25.
    45. Shan, J., Sampath, A., 2005. Urban DEM Generation from Raw Lidar Data: A Labeling Algorithm and its Performance. Int. J. Remote Sens. 71, 217-222.
    46. Sohn, G., Dowman, I., 2007. Data fusion of high-resolution satellite imagery and LIDAR data for automatic building extraction. ISPRS J. Photogramm. Remote Sens. 62, 43-63.
    47. Sun, D., Kafatos, M., 2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 34, L24406.
    48. Thorsson, S., Lindberg, F., Eliasson, I., Holmer, B., 2007. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 27, 1983-1993.
    49. Teo, T.A., Chen, L.C. (2006). Building Shaping from LiDAR DATA. Journal of Photogrammetry and Remote Sensing, Volume 11, No.2, June 2006, pp. 175-189
    50. Vallet, J., 2008. High Precision LiDAR Mapping for Complex Mountain Topography, In: Proceedings of the Mountain Mapping and Visualization. 6th ICA Mountain Cartography Workshop. Lenk im Simmental, Switzerland.
    51. VDI., 1998. Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part 1: Climate. VDI guideline 3787. Part 2. Berlin: Beuth.
    52. Yuan, F., Bauer, M.E., 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 106, 375-386.
    53. Zhang, Z., Ji, M., Shu, J., Deng, Z., Wu, Y., 2008. Surface urban heat island in shanghai, china: examining the relationship between land surface temperature and impervious surface fractions derived from Landsat ETM+ imagery. The Int. Arch. Photogram. Rem. Sens. Spatial Inform. Sci. 37, 601-606.

    下載圖示 校內:2020-08-01公開
    校外:2020-08-01公開
    QR CODE