| 研究生: |
陳俋廷 Chen, I-Ting |
|---|---|
| 論文名稱: |
以微波輔助方式修飾合成g-C3N4/Bi2WO6/rGO並於高壓系統下進行光催化還原二氧化碳 High Pressure Photoreduction of CO2: g-C3N4/Bi2WO6/rGO prepared by a microwave-assisted-hydrothermal method |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 二氧化碳 、光觸媒 、g-C3N4 、Bi2WO6 、石墨烯 、高壓光催化 |
| 外文關鍵詞: | Carbon dioxide, Photocatalyst, g-C3N4, Bi2WO6, Graphene, High pressure photocatalysis |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,溫室氣體導致嚴重的全球氣候變化異常,例如溫室效應和極端氣候,其中主要原因之一為二氧化碳排放過度。在減少二氧化碳排放的各種技術中,將二氧化碳轉化為化學品或燃料的光催化技術被認為是最有潛力的處理方式之一。因此,開發高穩定性,高效率和低成本的光觸媒具重要性。考慮到目前大多數關於二氧化碳光還原技術都是在常壓下進行,因此,本研究嘗試探討高壓下光催化還原二氧化碳。利用微波輔助成功改質graphite-like carbon nitride (g-C3N4, GCN)及製備出3%rGO/MCN/Bi2WO6-Y% (Y = 25, 50, 75, 100),合成之光觸媒將透過XRD、FTIR、SEM、HR-TEM、UV-vis、PL、XPS、以及比表面積分析儀進行特性分析,並應用於光催化二氧化碳還原成一氧化碳。首先,經由在氨水溶液下微波水熱60分鐘後,不同溫度條件下,GCN的結構以及特性皆有明顯變化。而所獲得之淡黃色樣品,亦即modified GCN (MCN-X, X = 130, 150, 170, 190°C)。其中又以MCN-130擁有最佳的光催化活性,經過12小時的反應,其CO產率為4.22 μmol/g。接著,為了後續複合材料的製備,MCN130在氬氣氣氛下以600°C鍛燒2小時(MCN130-600),並以微波輔助水熱方法合成出具異質結構之3%rGO/MCN/Bi2WO6-Y% (Y = 25, 50, 75, 100),其中又以3%rGO/MCN/Bi2WO6-100% 擁有最佳光催化活性 (CO 產率 = 13.5 μmol/g),因為相較於其他比例的觸媒,它具有較窄的能隙、較高的表面積,有利於光還原二氧化碳。此外,在本研究中亦討論不同的壓力條件下對於3%rGO/MCN/Bi2WO6-100%光催化效率之影響。
In recent years, the greenhouses gases (i.e., excessive CO2 emission) led to serious global climate change problems, e.g., greenhouse effect and extreme climate. Among various techniques for reduction of CO2 emissions, the photocatalytic conversion of CO2 into chemicals or fuels is considered one of the promising strategies to address this problem. Thus, it is important to explore a photocatalyst with stability, high efficiency, and low cost. In addition, considering most of the research about CO2 photoconversion was conducted at normal pressure, the effects of high pressure on photoreduction of CO2 are investigated in this study. In this work, photocatalytic reduction of CO2 to CO using modified GCN (denoted as MCN) and 3%rGO/MCN/Bi2WO6-Y% (Y = 25, 50, 75, 100) which are prepared via a microwave-assisted route is reported. The physical-chemical properties and morphology of the photocatalysts are characterized by various analytic tools and spectroscopies, including XRD, XPS, TEM, SEM, PL, FTIR, and UV-visible spectroscopy. For MCN samples, structure and morphology of the GCN can easily be modified by a microwave-assisted hydrothermal method in an ammonia solution at different temperatures (130, 150, 170, 190) for 60 min. The obtained pale-yellow samples, MCN-X are used as photocatalysts in the CO2 photoreduction under the light irradiation. Among the samples, the MCN130 sample shows the highest CO yield of 4.22 μmol/g. For the heterostructured catalysts, 3%rGO/MCN/Bi2WO6-Y% (Y = 25, 50, 75, 100) samples are also successfully synthesized through a microwave system. In the photocatalytic CO2 reduction experiments, it was found that the 3%rGO/MCN/Bi2WO6-100% possesses the superior activity (CO yield = 13.5 μmol/g) within 12 h. The reason may be due to the 3%rGO/MCN/Bi2WO6-100% possesses a smaller band gap, and higher surface area compared to other 3%rGO/MCN/Bi2WO6-Y% (Y= 25, 50, 75). In addition, the effects of different operating pressures on the photoreduction of CO2 catalyzed by 3%rGO/MCN/Bi2WO6-100% are also discussed.
REFERENCES
Abdelkader, B. A., Antar, M. A., Laoui, T., & Khan, Z. (2019). Development of graphene oxide-based membrane as a pretreatment for thermal seawater desalination. Desalination, 465, 13-24. doi:https://doi.org/10.1016/j.desal.2019.04.028
Abelló, S., & Montané, D. (2011). Exploring iron-based multifunctional catalysts for Fischer–Tropsch Synthesis: A review. ChemSusChem, 4(11), 1538-1556. doi:10.1002/cssc.201100189
Akira Saji, Yukihiro Takamura, Hidetomo Noda, Fujio Watanabe, Hitoki Matsuda, & Hasatani, M. (1997). Application of PSA to separation of carbon dioxide from flue gas. The Society of Chemical Engineers, Japan, 23(2), 149-156. doi:10.1252/kakoronbunshu.23.149
Anpo, M., Yamashita, H., Ichihashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396(1), 21-26. doi:https://doi.org/10.1016/0022-0728(95)04141-A
Bahadori, E., Tripodi, A., Villa, A., Pirola, C., Prati, L., Ramis, G., & Rossetti, I. (2018). High pressure photoreduction of CO2: Effect of catalyst formulation, hole ccavenger addition and operating conditions. Catalysts, 8(10), 430. doi:10.3390/catal8100430
Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial and Engineering Chemistry Research, 41(6), 1393-1411. doi:10.1021/ie0108088
Bilecka, I., & Niederberger, M. (2010). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358. doi:10.1039/b9nr00377k
Blomen, E., Hendriks, C., & Neele, F. (2009). Capture technologies: Improvements and promising developments. Energy Procedia, 1(1), 1505-1512. doi:https://doi.org/10.1016/j.egypro.2009.01.197
BP. (2018). Statistical Review of World Energy. Retrieved from https://www.bp.com/
Bui, M., Fajardy, M., & Mac Dowell, N. (2018). Bio-energy with carbon capture and storage (BECCS): Opportunities for performance improvement. Fuel, 213, 164-175. doi:https://doi.org/10.1016/j.fuel.2017.10.100
Dilshad, M. R., Islam, A., Hamidullah, U., Jamshaid, F., Ahmad, A., Butt, M. T. Z., & Ijaz, A. (2019). Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Separation and Purification Technology, 210, 627-635. doi:https://doi.org/10.1016/j.seppur.2018.08.026
Ed Dlugokencky, & Tans, P. (2018). Trends in atmospheric carbon dioxide. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
Fan, H., Wang, N., Tian, Y., Ai, S., & Zhan, J. (2016). Acetic acid induced synthesis of laminated activated carbon nitride nanostructures. Carbon, 107, 747-753. doi:https://doi.org/10.1016/j.carbon.2016.06.082
Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—The U.S. department of energy's carbon sequestration program. International Journal of Greenhouse Gas Control, 2(1), 9-20. doi:https://doi.org/10.1016/S1750-5836(07)00094-1
Finlayson, A. P., Ward, E., Tsaneva, V. N., & Glowacki, B. A. (2005). Bi2O3–WO3 compounds for photocatalytic applications by solid state and viscous processing. Journal of Power Sources, 145(2), 667-674. doi:https://doi.org/10.1016/j.jpowsour.2005.01.072
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357
Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), 279-282. doi:https://doi.org/10.1016/S0040-4039(00)83996-9
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183. doi:10.1038/nmat1849
Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199
Han, T., Wang, X., Ma, Y., Shao, G., Dong, X., & Yu, C. (2017). Mesoporous Bi2WO6 sheets synthesized via a sol–gel freeze-drying method with excellent photocatalytic performance. Journal of Sol-Gel Science and Technology, 82(1), 101-108. doi:10.1007/s10971-016-4270-2
He, Y., Zhang, L., Fan, M., Wang, X., Walbridge, M. L., Nong, Q., . . . Zhao, L. (2015). Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Materials and Solar Cells, 137, 175-184. doi:https://doi.org/10.1016/j.solmat.2015.01.037
Hu, C., Chu, Y.-C., Wang, M.-S., & Wu, X.-H. (2017). Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 348, 8-17. doi:10.1016/j.jphotochem.2017.08.006
Huang, Z., Yan, F.-W., & Yuan, G.-q. (2018). Ultrasound-assisted fabrication of hierarchical rodlike graphitic carbon nitride with fewer defects and enhanced visible-light photocatalytic activity. ACS Sustainable Chemistry & Engineering, 6(3), 3187-3195. doi:10.1021/acssuschemeng.7b03305
Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0
Iqbal, W., Yang, B., Zhao, X., Rauf, M., Waqas, M., Gong, Y., . . . Mao, Y. (2018). Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: the road travelled and the way forward. Catalysis Science & Technology, 8(18), 4576-4599. doi:10.1039/C8CY01061G
Jiang, L., Yuan, X., Zeng, G., Liang, J., Wu, Z., & Wang, H. (2018). Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environmental Science: Nano, 5(3), 599-615. doi:10.1039/C7EN01031A
Jiang, N., Wang, H., Luo, Y., Yu, S., Liu, A., Zou, W., . . . Dong, L. (2018). Facile two-step treatment of carbon nitride for preparation of highly efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 227, 541-547. doi:10.1016/j.apcatb.2018.01.056
Jiang, Z., Wan, W., Li, H., Yuan, S., Zhao, H., & Wong, P. K. (2018). A hierarchical Z-Scheme alpha-Fe2O3 /g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Advanced Materials, 30(10). doi:10.1002/adma.201706108
Jin, B., Yao, G., Jin, F., & Hu, Y. H. (2018). Photocatalytic conversion of CO2 over C3N4-based catalysts. Catalysis Today, 316, 149-154. doi:https://doi.org/10.1016/j.cattod.2018.05.010
Kang, Y., Yang, Y., Yin, L.-C., Kang, X., Wang, L., Liu, G., & Cheng, H.-M. (2016). Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Advanced Materials, 28(30), 6471-6477. doi:10.1002/adma.201601567
Kočí, K., Obalová, L., & Lacný, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 62(1), 1-9. doi:10.2478/s11696-007-0072-x
Lei, R., Du, B., Lai, X., Wu, J., Zhang, Z., Liu, S., . . . Jian, J. (2019). Single-crystalline melem (C6N10H6) nanorods: a novel stable molecular crystal photocatalyst with modulated charge potentials and dynamics. Journal of Materials Chemistry A. doi:10.1039/c9ta02556a
Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. doi:10.1016/j.rser.2014.07.093
Li, K., Peng, B., & Peng, T. (2016). Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089
Li, M.-f., Liu, Y.-g., Zeng, G.-m., Liu, N., & Liu, S.-b. (2019). Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. Chemosphere, 226, 360-380. doi:https://doi.org/10.1016/j.chemosphere.2019.03.117
Li, M., Zhang, L., Fan, X., Zhou, Y., Wu, M., & Shi, J. (2015). Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. Journal of Materials Chemistry A, 3(9), 5189-5196. doi:10.1039/c4ta06295g
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. (2018). A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 8(14), 7651-7669. doi:10.1039/C7RA13546G
Li, X., Yu, J., & Jaroniec, M. (2016). Hierarchical photocatalysts. Chemical Society Reviews, 45(9), 2603-2636. doi:10.1039/C5CS00838G
Liang, R., Shen, L., Jing, F., Wu, W., Qin, N., Lin, R., & Wu, L. (2015). NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Applied Catalysis B: Environmental, 162, 245-251. doi:https://doi.org/10.1016/j.apcatb.2014.06.049
Lin, L., Hou, C., Zhang, X., Wang, Y., Chen, Y., & He, T. (2018). Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Applied Catalysis B: Environmental, 221, 312-319. doi:10.1016/j.apcatb.2017.09.033
Liu, H., Chen, D., Wang, Z., Jing, H., & Zhang, R. (2017). Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Applied Catalysis B: Environmental, 203, 300-313. doi:10.1016/j.apcatb.2016.10.014
Liu, X., Zhao, L., Lai, H., Li, S., & Yi, Z. (2017). Efficient photocatalytic degradation of 4-nitrophenol over graphene modified TiO2. Journal of Chemical Technology & Biotechnology, 92(9), 2417-2424. doi:10.1002/jctb.5251
Low, J., Yu, J., & Ho, W. (2015). Graphene-based photocatalysts for CO2 reduction to solar fuel. The Journal of Physical Chemistry Letters, 6(21), 4244-4251. doi:10.1021/acs.jpclett.5b01610
Lv, N., Li, Y., Huang, Z., Li, T., Ye, S., Dionysiou, D. D., & Song, X. (2019). Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Applied Catalysis B: Environmental, 246, 303-311. doi:10.1016/j.apcatb.2019.01.068
Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3-4), 221-231. doi:10.1016/j.cattod.2009.08.015
Mao, M., Zhao, S., Chen, Z., She, X., Yi, J., Xia, K., . . . Li, H. (2018). Designing all-solid-state Z-Scheme 2D g-C3N4 /Bi2WO6 for improved photocatalysis and photocatalytic mechanism insight. Green Energy & Environment, 3(3), 229-238. doi:10.1016/j.gee.2017.11.001
Murugesan, P., Narayanan, S., Manickam, M., Murugesan, P. K., & Subbiah, R. (2018). A direct Z-scheme plasmonic AgCl@g-C3N4 heterojunction photocatalyst with superior visible light CO2 reduction in aqueous medium. Applied Surface Science, 450, 516-526. doi:10.1016/j.apsusc.2018.04.111
Osaka, Y., Tsujiguchi, T., & Kodama, A. (2018). Experimental investigation on the CO2 separation performance from humid flue gas by TSA process. Separation and Purification Technology, 207, 77-82. doi:https://doi.org/10.1016/j.seppur.2018.06.008
Ran, J., Jaroniec, M., & Qiao, S.-Z. (2018). Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Advanced Materials, 30(7), 1704649. doi:10.1002/adma.201704649
Ren, X., Wu, K., Qin, Z., Zhao, X., & Yang, H. (2019). The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. Journal of Alloys and Compounds, 788, 102-109. doi:10.1016/j.jallcom.2019.02.211
Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.-S., Jun, K.-W., . . . Lee, K.-W. (1999). Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Applied Catalysis A: General, 186(1), 201-213. doi:https://doi.org/10.1016/S0926-860X(99)00173-8
Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 5, 66-81. doi:10.1016/j.jcou.2013.12.005
Schütze, C., Bräuer, K., Dietrich, P., Engnath, V., Gisi, M., Horak, G., . . . Sauer, U. (2015). MONACO—Monitoring Approach for Geological CO2 Storage Sites Using a Hierarchical Observation Concept. Cham: Springer International Publishing.
Stangeland, K., Kalai, D., Li, H., & Yu, Z. (2017). CO2 methanation: The effect of catalysts and reaction conditions. Energy Procedia, 105, 2022-2027. doi:https://doi.org/10.1016/j.egypro.2017.03.577
Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23(2), 169-174. doi:https://doi.org/10.1016/S0926-3373(99)00079-X
Sun, J., Zhang, J., Zhang, M., Antonietti, M., Fu, X., & Wang, X. (2012). Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nature Communications, 3, 1139. doi:10.1038/ncomms2152
Tang, J., Zou, Z., & Ye, J. (2004). Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catalysis Letters, 92(1), 53-56. doi:10.1023/B:CATL.0000011086.20412.aa
Thanh Truc, N. T., Hanh, N. T., Nguyen, M. V., Le Chi, N. T. P., Van Noi, N., Tran, D. T., . . . Pham, T. D. (2018). Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels. Applied Surface Science, 457, 968-974. doi:10.1016/j.apsusc.2018.07.034
Thebo, K. H., Qian, X., Wei, Q., Zhang, Q., Cheng, H.-M., & Ren, W. (2018). Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. Journal of Materials Science & Technology, 34(9), 1481-1486. doi:https://doi.org/10.1016/j.jmst.2018.05.008
Tian, N., Zhang, Y., Li, X., Xiao, K., Du, X., Dong, F., . . . Huang, H. (2017). Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 38, 72-81. doi:10.1016/j.nanoen.2017.05.038
Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev, 40(7), 3703-3727. doi:10.1039/c1cs15008a
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., . . . Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 8(1), 76-80. doi:10.1038/nmat2317
Wang, Y., Zhang, J., Wang, X., Antonietti, M., & Li, H. (2010). Boron- and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation. Angewandte Chemie International Edition, 49(19), 3356-3359. doi:10.1002/anie.201000120
Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123. doi:https://doi.org/10.1016/j.apsusc.2016.07.030
Wu, C.-H., Kuo, C.-Y., Dong, C.-D., Chen, C.-W., Lin, Y.-L., & Huang, W.-J. (2019). Single-step solvothermal process for synthesizing SnO2/Bi2WO6 composites with high photocatalytic activity in the photodegradation of C.I. Reactive Red 2 under solar light. Reaction Kinetics, Mechanisms and Catalysis, 126(2), 1097-1113. doi:10.1007/s11144-019-01540-w
Wu, L., Bi, J., Li, Z., Wang, X., & Fu, X. (2008). Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catalysis Today, 131(1), 15-20. doi:https://doi.org/10.1016/j.cattod.2007.10.089
Xia, P., Zhu, B., Yu, J., Cao, S., & Jaroniec, M. (2017). Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Journal of Materials Chemistry A, 5(7), 3230-3238. doi:10.1039/c6ta08310b
Xie, T., Liu, Y., Wang, H., & Wu, Z. (2019). Synthesis of alpha-Fe2O3/Bi2WO6 layered heterojunctions by in situ growth strategy with enhanced visible-light photocatalytic activity. Sci Rep, 9(1), 7551. doi:10.1038/s41598-019-43917-w
Xue, W., Peng, Z., Huang, D., Zeng, G., Wen, X., Deng, R., . . . Yan, X. (2019). In situ synthesis of visible-light-driven Z-scheme AgI/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity. Ceramics International, 45(5), 6340-6349. doi:10.1016/j.ceramint.2018.12.119
Yan, S. C., Li, Z. S., & Zou, Z. G. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25(17), 10397-10401. doi:10.1021/la900923z
Yu, J., Jin, J., Cheng, B., & Jaroniec, M. (2014). A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2(10), 3407-3416. doi:10.1039/C3TA14493C
Yu, W., Xu, D., & Peng, T. (2015). Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A, 3(39), 19936-19947. doi:10.1039/C5TA05503B
Yuan, X., Shen, D., Zhang, Q., Zou, H., Liu, Z., & Peng, F. (2019). Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chemical Engineering Journal, 369, 292-301. doi:10.1016/j.cej.2019.03.082
Zhang, G., Lü, F., Li, M., Yang, J., Zhang, X., & Huang, B. (2010). Synthesis of nanometer Bi2WO6 synthesized by sol–gel method and its visible-light photocatalytic activity for degradation of 4BS. Journal of Physics and Chemistry of Solids, 71(4), 579-582. doi:https://doi.org/10.1016/j.jpcs.2009.12.041
Zhang, G., Liu, J., Xu, Y., & Sun, Y. (2018). A review of CH4–CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). International Journal of Hydrogen Energy, 43(32), 15030-15054. doi:10.1016/j.ijhydene.2018.06.091
Zhang, N., Ciriminna, R., Pagliaro, M., & Xu, Y. J. (2014). Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem Soc Rev, 43(15), 5276-5287. doi:10.1039/c4cs00056k
Zhong, Y., Wang, Z., Feng, J., Yan, S., Zhang, H., Li, Z., & Zou, Z. (2014). Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine. Applied Surface Science, 295, 253-259. doi:https://doi.org/10.1016/j.apsusc.2014.01.008
Zhou, H., Wen, Z., Liu, J., Ke, J., Duan, X., & Wang, S. (2019). Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. Applied Catalysis B: Environmental, 242, 76-84. doi:10.1016/j.apcatb.2018.09.090
Zhu, C., Liu, Y., Cao, H., Sun, J., Xu, Q., & Wang, L. (2019). Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 327-333. doi:10.1016/j.colsurfa.2019.02.029