簡易檢索 / 詳目顯示

研究生: 陳奕嘉
Chen, I-Chia
論文名稱: 壓電纖維於自電式紙鍵盤設計及應用
Design and Application of Self-powered Paper Keyboard Using Piezoelectric-fibers
指導教授: 沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 紙鍵盤壓電纖維網版印刷自電式紙感測器電極圖形設計
外文關鍵詞: Piezoelectric fiber, Paper keyboard, screen-printing, Electrode design, Self-powered sensor
相關次數: 點閱:112下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文創新以紙作為基板,透過網印技術(Screen Printing)將金屬電極直接印製於紙基板之上,並設計不同電極參數與壓電奈米纖維緊密的貼合,製作出可撓式的自電式紙鍵盤。其中壓電材料是由近場式靜電紡絲製程技術(Near-Field Electrospinning, NFES)所製作出的多分子聚合物聚偏氟乙烯(Polyvinylidene fluoride, PVDF)作為壓電纖維之原料,由於壓電纖維屬於一維度的材料,故其材料應變為線軸方向,因此本文採用d33工作模式發展自電式感測元件。接著針對自電式感測元件的電極做圖形參數的優化設計,電極圖形設計參數包括電極的形式、電極的對數、電極的寬度及電極的間距,藉由電極參數的優化設計來提升自電式感測元件之壓電轉換效率。依據實驗顯示以壓電纖維整合5對並聯電極,最高峰值電壓達159.2mV,高於傳統電極設計所輸出電壓值的3.7倍,而所設計之5對串聯電極為最佳電極圖形之設計,其輸出電壓值更高達431.8 mV,驗證此電極設計確實能有效提升感測元件之靈敏度。最後本論文以創新整合紙基板與壓電纖維、並透過電極優化設計完成自電式紙鍵盤研發,未來可將此概念應用於便利、環保及可拋式3C產品或穿戴式商品上,無須透過廢棄物回收,焚燒即可分解實現綠能之理念。

    In this paper, we fabricating flexible electronic circuits on paper and combine PVDF(Polyvinylidene fluoride) piezoelectric fiber using NFES(Near-field Electrospinning) to develop the flexible piezoelectric sensing element. We uncommonly adopt screen-printing technology to produce the electrodes, and design its d33 mode patterns. The experimental results show that the type of electrode is key to enhance the output voltage. The parallel type can induce an average of 159.2 mV positive voltage under the tapping experiment. Compared to the normal series type has a 3.7 times upgrade And five pairs of the series type for the best design of the electrode pattern, the output voltage as high as 431.8 mV. however, paper can be folded and creased (repeatedly), shaped to form threedimensional structures, trimmed using scissors and disposed of by incineration. Paper-based electronic circuits are thin and lightweight ; they should be useful for applications in consumer electronics , for disposable systems in wearable sensors. Finally, we design the prototype of the Self-powered Paper Keyboard and evaluate its feasibility.

    中文摘要 I Extended Abstract II 致謝 XI 目錄 XII 圖目錄 XIV 表目錄 XVII 符號表 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究方法 3 1-4 論文架構 4 第二章 文獻回顧 5 2-1紙基板之發展 5 2-2自電式材料運用及演進 11 2-3壓電纖維製程介紹 13 2-4自電式感測器之電極設計 21 第三章 壓電原理分析與電極設計 23 3-1 壓電效應 23 3-1-1壓電纖維材料 24 3-1-2壓電操作模式 27 3-1-3壓電本構方程式 30 3-2電極設計與分析 31 3-2-1 正壓電效應之估算 31 3-2-2 電極參數設定 34 3-2-3 電極圖形評估設計 38 3-2-4 電極圖形之電場模擬 43 3-3網版印刷電極製程 46 第四章 實驗設計與製作 50 4-1自電式感測元件之製作流程 50 4-1-1電極圖形之印刷 51 4-1-2 基板選用 54 4-1-2感測元件之製作 63 第五章 實驗結果與討論 66 5-1感測元件之自電特性量測 66 5-2紙鍵盤的設計與評估 83 5-2-1紙鍵盤應用架構 84 5-2-2紙鍵盤作動原理 85 第六章 結論與未來展望 88 6-1結論 88 6-2未來展望 90 參考文獻 91

    [1] A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Advanced Functional Materials, Vol. 20, pp. 28-35, 2010.
    [2] S. P. Beeby, J. N. Ross, N. M. White, “Design and fabrication of a micromachined silicon accelerometer with thick-film printed PZT sensors,” Micromechanics and Microengineering, Vol. 10, pp. 322-328, 2000.
    [3] J. Tieman, J. Schmalzel, R. Krchnavek, “Design of a MEMS-based, 3-Axis Accelerometer Smart Sensor,” Sensors for Industry Conference, Anchorage, AK , pp. 19-23, 2002.
    [4] H. P. Phan, D. V. Dao, T. Dinh, H. Brooke, A. Qamar, N.T. Nguyen, Y. Zhu, “Graphite-on-paper based tactile sensors using plastic laminating technique,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, pp. 825-828, 2015.
    [5] M. Balde, A. Vena, B. Sorli, “Moisture sensor feasibility on paper-based substrate,” Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1-6, 2015.
    [6] H. Lee, S. Choi, “An origami paper-based bacteria-powered battery with an air-cathod,” 2015 18th International Conference on Solid-State Sensors Actuators and Microsystems, Anchorage, AK, pp. 1009-1012, 2015.
    [7] The Cambridge company Novalia, “Paper Thin Novalia Printed Keyboard And Tech Offers A Wealth Of Possibilities,” (http://www.audioposter.com/) ,2014.
    [8] J. H. Liao, “Design and Fabrication of Electrode Patterns using Screen-printed Technology for Piezoelectric Nano-fibers in d33 Mode and its Applications” National Cheng Kung University, Department of Systems and Naval Mechatronic Engineering, 2015.
    [9] X. Y. Liu, M. O’Brien, M. Mwangi, X. J. Li, and G. M. Whitesides, “Paper-based piezoresistive MEMS force sensors,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, pp. 133-136, 2011.
    [10] M. Omidi, I. F. Haghiralsadat, F. Oroojalian, Amir Yadegari, Milad Nazarzadeh , M. Choolaei ; M. Azhdari, “Fabrication of paper-based load sensor by using the multi-walled carbon nanotubes ink,” IEEE International Conference on Networking, Sensing and Control (ICNSC), Evry, pp. 221-225, 2013.
    [11] S. K. Mahadeva, K. Walus, and B. Stoeber, “Fabrication and testing of piezoelectric hybrid paper for MEMS applications,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, pp. 620-623, 2014.
    [12] Y. H. Wang, X. Li, C. Zhao, and X. Liu, and G. M. Whitesides, “A paper-based piezoelectric touch pad integrating zinc oxide nanowires,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, pp. 781-784, 2014.
    [13] K. Kiml, H. Jang, C. W. Park, H. K. Park, S. Choi, “Paper-Based Printed Circuit Boards,” International Conference on Control, Automation and Systems (ICCAS), Busan, pp. 1857-1859, 2015.
    [14] C. Ravariu, F. Ravariu, D. Dobrescu, L. Dobrescu, C. Codreanu, and M. Avram, “A designing roule for a pressure sensor with PZT layer,” Semiconductor Conference, Sinaia, Vol. 2, pp. 379-382, 2001.
    [15] Y. B. Jeon, “MEMS power generator with transverse mode thin film PZT,” Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
    [16] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, Vol. 10, pp. 726-731, 2010.
    [17] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol. 63, pp. 2223-2253, 2003.
    [18] D. Sun, C. Chang, S. Li, L. Lin, “Near-field electrospinning,” Nano Letters, Vol 6, pp.839-842, 2006.
    [19] C. Chang, Y. K. Fuh, L. Lin, “A direct-write piezoelectric PVDF nanogenerator,” 2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, pp. 1485-1488, 2009.
    [20] G. Taylor,“Electrically driven jets,” Proceedings of the Royal Society of London A, Vol. 313, pp. 453-475, 1969.
    [21] D. Numakura, “Advanced screen printing practical approaches for printable & flexible electronics,” 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference, Taipei, 2008.
    [22] W. A. Yee, M. Kotaki, Y. Liu, X. Lu, “Morphology, polymorphism behavior andmolecular orientation of electrospun poly (vinylidene fluoride) fibers,” Polymer, Vol. 48, pp. 512-521, 2007.
    [23] X. Chen, S. Xu, N. Yao, Y. Shi, “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, pp. 2133-2137, 2010.
    [24] B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy,” ACS Nano, Vol. 4, pp. 3647-3652, 2010.
    [25] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, Vol. 10, pp. 726-731, 2010.
    [26] J. Chang, L. Lin, “Large array electrospun PVDF nanogenerators on a flexible substrate,” 2011 16th International Solid-State Sensors Actuators and Microsystems Conference, Beijing, pp. 747-750, 2011.
    [27] Z. H. Liu, C. T. Pan, Z. Y. Ou, W. C Wang, “Piezoelectricity of well-aligned electrospun fiber composites,” IEEE Sensors Journal, Vol. 13, pp. 4098-4103, 2013.
    [28] C. Wang, Z. Wang, T. L. Ren, Y. Zhu, Y. Yang, X. Wu, H. Wang, H. Fang, L. liu, “A micromachined piezoelectric ultrasonic transducer operating in d33 mode using square interdigital electrodes,” IEEE Sensors Journal, Vol. 7, pp. 967-976, 2007.
    [29] S. B. Kim, H. Park, S. H. Kim, H. C Wikle, J. H. Park, D. J. Kim, “Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting,” Microelectromechanical Systems, Vol. 22, pp. 26-33, 2013.
    [30] 廖信,古鎮南,精密網版印刷應用於微/奈米抗反射結構之矽晶太陽能電池,中央印製廠,2011年。
    [31] 周卓明,壓電力學,全華科技圖書股份有限公司,2003年。
    [32] 廖信,王裕強,網版印刷在微光機電系統製程之應用,中央印製廠,2008年。
    [33] 鄭松斌,影響網印品質因素之探討,印刷科技,廿一卷二期,2005年。
    [34] 陳怡潔, 張菀琳,王元伶,徐偉婷,曾世豪,直接感光製版與非直接感光製版對網點再現性之研究,圖文傳播藝術學報,99-108頁,2003年。

    下載圖示 校內:2021-07-15公開
    校外:2021-07-15公開
    QR CODE