簡易檢索 / 詳目顯示

研究生: 洪柄騰
Hung, Ping-Teng
論文名稱: 遙軸順應性裝置之拓樸最佳化設計
Topology Optimization for Design of a Remote Center Compliance Device
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 撓性平移絞鏈撓性旋轉絞鏈拓樸最佳化遙軸順應性裝置順應中心
外文關鍵詞: translational flexure hinge, revolute flexure hinge, topology optimization, remote center compliance device, compliance center
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遙軸順應性裝置(remote center compliance device, 簡稱RCC)是一種被動式的誤差補償機構,可裝置在機械手臂末端,提供自動化裝配過程中可能產生的定位與角度誤差補償,使裝配能夠順利完成。本研究提出了一個適用於遙軸順應性裝置的拓樸最佳化方法,並將此方法應用於一個創新的遙軸順應性裝置的設計,目標為設計出相對於市售遙軸順應性裝置更大的補償範圍與更低裝配力的設計。在拓樸最佳化理論方面,本研究根據遙軸順應性裝置的順應中心特性,結合了撓性平移絞鏈與撓性旋轉絞鏈的拓樸最佳化理論,使順應中心能位於插件的末端,達成成功裝配的條件。本研究接著以撓性平移絞鏈與撓性旋轉絞鏈做為範例機構,展示可透過拓樸最佳化中的平移限制式與旋轉限制式分別調整機構的平移特性與旋轉中心位置。本研究參考市售遙軸順應性裝置的尺寸定義設計區間的範圍,在設計區間範圍內設計出16種拓樸最佳化結果,根據篩選準則挑選出最佳的三個案例進行順應中心分析,最後挑選出最符合目標順應中心特性的案例,並進行裝配力分析與試做驗證。測試項目包含了遙軸順應性裝置在裝配時可容許的最大偏移量與偏轉角度測試、裝配力測試以及剛性量測。實驗結果顯示,本研究與市售的遙軸順應性裝置均能在配件治具導角範圍內的偏移量4 mm內成功裝配。在最大偏轉角度方面,本研究的遙軸順應性裝置的最大偏轉角度為9度,高出市售遙軸順應性裝置350%。裝配力測試的部分,本研究的最大裝配力與平均裝配力分別為10.76 N和4.89 N,相較於市售的裝置能夠分別減低67.3%與75.2%。依據剛性量測的結果,本研究的遙軸順應性裝置之x方向剛性為1.87 N/mm,y方向的抗壓剛性為27.29 N/mm,y方向抗拉剛性為30.05 N/mm,z方向剛性為5.99 N/mm,繞z軸旋轉之剛性為72.30 N-m/rad。

    A remote center compliance (RCC) device is commonly used in automated industry and can be applied for correcting alignment errors with peg-in-hole assembly applications. When the compliance center is near the contact point, the peg will automatically correct lateral and rotational misalignment. In order to develop an RCC that has a wider compensation range and a less assembly in peg-in-hole applications, this study presents a topology optimization method that combines the concepts of translational and revolute flexure hinges to design an innovative RCC. The compliance center of the RCC can be adjusted based on the proposed topology optimization method. After an optimum design is obtained, the RCC is prototyped through additive manufacturing using a thermoplastic elastomer (TPE). Experiments, including the identification of maximum allowable translational and angular misalignments, assembly force, and stiffness measurements, are conducted in this study, and the results are compared against the test results of a commercial RCC. The experimental results show that the insertion can be completed within the 4mm translational misalignment, and maximum allowable angular misalignment of the developed RCC is 9 degrees, which is 350% higher than the commercial RCC. The maximum assembly force is 10.76 N, which is 67.3% lower than the commercial RCC and 90.0% lower than without RCC. The average assembly force is 4.89 N, which is 75.2% lower than with the commercial RCC and 91.9% lower than without RCC. The stiffness measurement results show that the stiffness of the developed RCC in the x-direction is 1.87 N/mm, the compressive stiffness in the y-direction is 27.29 N/mm, the tensile stiffness in the y-direction is 30.05 N/mm, the stiffness in the z-direction is 5.99 N/mm, and the rotational stiffness around the z-axis is 72.3 N-m/rad.

    摘要 i ABSTRACT ii 誌謝 xx 目錄 xxi 表目錄 xxiv 圖目錄 xxvi 符號說明 xxx 第一章 緒論 1 1-1 前言 1 1-2 遙軸順應性裝置介紹 2 1-3 撓性機構設計文獻回顧 9 1-4 拓樸最佳化文獻回顧 10 1-4-1 SIMP法拓樸最佳化 12 1-4-2 撓性絞鏈之拓樸最佳化理論 13 1-5 研究目的 16 1-6 本文架構 16 第二章 遙軸順應性裝置拓樸最佳化理論 18 2-1 前言 18 2-2 遙軸順應性裝置拓樸最佳化設計 18 2-3 順應中心設計 20 2-4 參數轉換與有限元素分析 23 2-5 濾化演算法與投射函數 24 2-6 目標函數、限制式與靈敏度 27 2-6-1 目標函數與靈敏度 27 2-6-2 限制式與靈敏度 30 2-7 MMA理論 35 2-8 遙軸順應性裝置拓樸最佳化流程與收斂準則 40 2-9 本章小結 43 第三章 拓樸最佳化範例 44 3-1 前言 44 3-2 範例一:撓性平移絞鏈 44 3-3 範例二:撓性旋轉絞鏈 51 3-4 本章小結 56 第四章 遙軸順應性裝置拓樸最佳化設計與分析 57 4-1 前言 57 4-2 設計區間與參數設定 57 4-3 拓樸最佳化設計結果 60 4-4 有限元素分析模擬結果 68 4-4-1 順應中心分析 68 4-4-2 不同負載下順應中心特性變化 73 4-4-3 端效器負載對順應中心特性的影響 74 4-4-4 裝配力分析 75 4-5 本章小結 80 第五章 遙軸順應性裝置試做與驗證 81 5-1 前言 81 5-2 遙軸順應性裝置試做 81 5-3 裝配與裝配力量測實驗 84 5-3-1 最大偏移量與偏轉角度測試 90 5-3-2 裝配力測試 103 5-4 剛性量測 106 5-5 與市售遙軸順應性裝置規格之討論與比較 113 5-6 本章小結 115 第六章 結論與建議 116 6-1 結論 116 6-2 建議 117 參考文獻 118

    [1] R. Li and H. Qiao, "A survey of methods and strategies for high-precision robotic grasping and assembly tasks—some new trends," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2718-2732, 2019.
    [2] SCHUNK 公司網頁. https://schunk.com/fileadmin/pim/docs/IM0026249.PDF.
    [3] 陳怡和, "發展力量調控機構於不確定性機械互動," 國立成功大學機械工程學系碩士學位論文, 2011.
    [4] W. Wang, R. N. K. Loh, and E. Y. Gu, "Passive compliance versus active compliance in robot‐based automated assembly systems," Industrial Robot, vol. 25, no. 1, pp. 48-57, 1998.
    [5] D. Whitney and J. Rourke, "Mechanical behavior and design equations for elastomer shear pad remote center compliances," Journal of Dynamic Systems, Measurement, and Control, vol. 108, no. 3, pp. 223-232, 1986.
    [6] N. Ciblak and H. Lipkin, "Design and analysis of remote center of compliance structures," Journal of robotic systems, vol. 20, no. 8, pp. 415-427, 2003.
    [7] S. Lee, "Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly," IEEE Transactions on Automation Science and Engineering, vol. 2, no. 2, pp. 193-197, 2005.
    [8] D. E. Whitney, "Quasi-Static Assembly of Compliantly Supported Rigid Parts," Journal of Dynamic Systems, Measurement, and Control, vol. 104, pp. 65-77, 1982.
    [9] D. E. Whitney, Mechanical assemblies: their design, manufacture, and role in product development. Oxford university press New York, 2004.
    [10] ZIMMER公司網頁. https://www.zimmer-group.com/fileadmin/pim/MER/GD/PG/MER_GD_PG_XYR1040-B__SEN__APD__V1.pdf.
    [11] ATI公司網頁. https://www.ati-ia.com/Library/documents/ATI%20Compensator%20Catalog.pdf.
    [12] P. C. Watson, "Remote Center Compliance System," U.S. Patent 4,098,001, Jul. 4, 1978.
    [13] S. H. Drake and N. Simunovic, "Compliant Assembly System Device " U.S. Patent 4155169, May 22, 1979.
    [14] T. L. D. Fazio and D. E. Whitney, "Adjustable Remote Center Compliance Device," U.S. Patent 4,477,975, Oct. 23, 1984.
    [15] J. M. Rourke and D. E. Whitney, "Remote Center Compliance Device," U.S. Patent 4,556,203, Dec. 3, 1985.
    [16] Y. Liu, "Design of Compliant Mechanisms for Adaptive Assembly and Grasping by using Structural Optimization," Ph.D. Thesis, The Chinese University of Hong Kong (Hong Kong), Ann Arbor, 10297303, 2015.
    [17] B. Zhu, X. Zhang, H. Zhang, J. Liang, H. Zang, H. Li, and R. Wang, "Design of compliant mechanisms using continuum topology optimization: A review," Mechanism and Machine Theory, vol. 143, p. 103622, 2020.
    [18] L. L. Howell, "Compliant mechanisms," in 21st century kinematics: Springer, 2013, pp. 189-216.
    [19] L. L. Howell and A. Midha, "A loop-closure theory for the analysis and synthesis of compliant mechanisms," J. Mech. Des., vol. 118, no. 1, pp. 121-125, 1996.
    [20] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media, 2003.
    [21] R. T. Haftka and R. V. Grandhi, "Structural shape optimization—a survey," Computer methods in applied mechanics and engineering, vol. 57, no. 1, pp. 91-106, 1986.
    [22] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, "Efficient topology optimization in MATLAB using 88 lines of code," Structural and Multidisciplinary Optimization, vol. 43, no. 1, pp. 1-16, 2011.
    [23] M. P. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer methods in applied mechanics and engineering, vol. 71, no. 2, pp. 197-224, 1988.
    [24] M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of applied mechanics, vol. 69, no. 9, pp. 635-654, 1999.
    [25] X. Huang and M. Xie, Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons, 2010.
    [26] O. Sigmund, "Design of material structures using topology optimization," Ph.D. Thesis, Department of Solid Mechanics, Technical University of Denmark, 1994.
    [27] J. K. Guest, J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions," International journal for numerical methods in engineering, vol. 61, no. 2, pp. 238-254, 2004.
    [28] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4, pp. 401-424, 2007.
    [29] S. Xu, Y. Cai, and G. Cheng, "Volume preserving nonlinear density filter based on heaviside functions," Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495-505, 2010.
    [30] F. Wang, B. S. Lazarov, and O. Sigmund, "On projection methods, convergence and robust formulations in topology optimization," Structural and multidisciplinary optimization, vol. 43, no. 6, pp. 767-784, 2011.
    [31] M. Liu, X. Zhang, and S. Fatikow, "Design and analysis of a high-accuracy flexure hinge," Review of Scientific Instruments, vol. 87, no. 5, p. 055106, 2016.
    [32] B. Zhu and X. Zhang, Topology Optimization of Compliant Mechanisms. Springer, 2018.
    [33] J. Paros, "How to design exural hinges," Mach Design, pp. 151-156, 1965.
    [34] S. T. Smith, V. G. Badami, J. S. Dale, and Y. Xu, "Elliptical flexure hinges," Review of Scientific Instruments, vol. 68, no. 3, pp. 1474-1483, 1997.
    [35] N. Lobontiu, J. S. Paine, E. Garcia, and M. Goldfarb, "Corner-filleted flexure hinges," J. Mech. Des., vol. 123, no. 3, pp. 346-352, 2001.
    [36] N. Lobontiu, J. S. Paine, E. Garcia, and M. Goldfarb, "Design of symmetric conic-section flexure hinges based on closed-form compliance equations," Mechanism and machine theory, vol. 37, no. 5, pp. 477-498, 2002.
    [37] N. Lobontiu, J. S. Paine, E. O’Malley, and M. Samuelson, "Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations," Precision Engineering, vol. 26, no. 2, pp. 183-192, 2002.
    [38] J. B. Hopkins and M. L. Culpepper, "Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)–Part I: Principles," Precision Engineering, vol. 34, no. 2, pp. 259-270, 2010.
    [39] J. B. Hopkins and M. L. Culpepper, "Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part II: Practice," Precision Engineering, vol. 34, no. 2, pp. 271-278, 2010.
    [40] B. Zhu, X. Zhang, and S. Fatikow, "Design of single-axis flexure hinges using continuum topology optimization method," Science China Technological Sciences, vol. 57, no. 3, pp. 560-567, 2014.
    [41] M. Liu, X. Zhang, and S. Fatikow, "Design of flexure hinges based on stress-constrained topology optimization," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 231, no. 24, pp. 4635-4645, 2017.
    [42] M. Liu, J. Zhan, and X. Zhang, "Topology optimization of distributed flexure hinges with desired performance," Engineering Optimization, vol. 52, no. 3, pp. 405-425, 2020.
    [43] O. Sigmund and J. Petersson, "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima," Structural optimization, vol. 16, no. 1, pp. 68-75, 1998.
    [44] O. Sigmund, "On the usefulness of non-gradient approaches in topology optimization," Structural and Multidisciplinary Optimization, vol. 43, no. 5, pp. 589-596, 2011.
    [45] K. Svanberg, "MMA and GCMMA-two methods for nonlinear optimization," KTH, Stockholm, Sweden, Technical Report, 2007.
    [46] O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and multidisciplinary optimization, vol. 21, no. 2, pp. 120-127, 2001.
    [47] C. H. Liu, Y. Chen, and S. Y. Yang, "Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages," Materials Today Communications, vol. 26, 101895, 2021.

    無法下載圖示 校內:2027-08-10公開
    校外:2027-08-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE