簡易檢索 / 詳目顯示

研究生: 梅立人
Mei, Li-Then
論文名稱: 非當量銅添加劑在不同熱處理條件下對三種含銅氧化物變阻性質之影響
Nonstoichiometric Copper Oxide Addition and Thermal Treatment Effects on the Varistor Properties of Three Copper-Containing Oxides
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 銅析出變阻器CaCu3Ti4O12尖晶石鐵氧磁體EMI
外文關鍵詞: copper precipitation, CaCu3Ti4O12, spinel ferrite, varistor, EMI
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以固態反應法和燒結的方式製作CaCu3Ti4O12和含銅尖晶石鐵氧磁體,藉由改變配方或熱處理條件,使已具有高電容量或是高導磁係數的材料同時具有變阻性質,以整合變阻器和電感或是電容元件的防靜電脈衝(ESD)和抗電磁干擾(EMI)功能。CaCu3Ti4O12和含銅尖晶石鐵氧磁體在經過特定的熱處理後會產生異常晶粒成長的現象,此時晶粒內部份的銅離子會析出到晶粒邊界。這些位於晶粒邊界的富銅二次相為p型導電物質,可與n型半導體CaCu3Ti4O12晶粒或是鐵氧磁體晶粒形成蕭特基能障,進而使試片具有變阻性質。除了利用銅離子析出至晶粒邊界以提高晶粒邊界的受體濃度,也可添加氧化鉍於含鐵量較高的鐵氧磁體中,藉由氧化鉍與含鐵量較高的鐵氧磁體在高溫時會產生化學反應,導致靠近晶粒邊界的鐵氧磁體的含鐵量減少,使靠近晶粒邊界的鐵氧磁體的導電機構從n型轉變成p型。適當的配方及熱處理條件可以促進晶粒邊界形成蕭特基能障,進而使電容器或是電感器同時具有變阻器的功能。整合兩種元件的功能後,可降低終端電子產品的生產成本和體積。

    CaCu3Ti4O12 and two kinds of copper-containing spinel ferrites were treated with different thermal process to make a material exhibiting simultaneous capacitor or inductor and varistor properties. Varistor and EMI filter can be integrated by using varistor-magnetic or varistor-dielectric materials to protect other components from electro-static discharge (ESD) and decrease electromagnetic interference (EMI) simultaneously. Integrating different kinds of passive components can reduce the final product size. The relationship between the grain-boundary composition and varistor properties were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion spectroscopy (EDS), and X-ray photoelectric spectroscopy (XPS). Abnormal grain growth occurs after specific sintering processes in CaCu3Ti4O12 and copper spinel ferrite. After abnormal grain growth, copper oxides would precipitate at grain-boundary or triple junction. The copper oxides would develop at the grain boundary as the acceptor state, forming double Schottky barriers with the n-type semiconductor grains, causing the specimens exhibit varistor property. Except using copper oxides precipitate at grain-boundary to form Schottky barrier, iron-rich ferrites added with bismuth oxide treated with suitable thermal process also can form Schottky barrier. The experimental results showed that Bi2O3 reacted and diffused into the spinel ferrite grain, forming bismuth iron compounds, causing the chemical composition near grain-boundary become iron deficient. The Fe deficiency spinel ferrite near the grain-boundary then changed to p-type conduction. The combination of the n-type semi-conductive grain interior and p-type spinel ferrite near the grain-boundary can form a double Schottky barrier, leading the specimen to exhibit varistor properties.

    目錄 摘要.....I Extended Abstract.....II 誌謝.....VII 第一章 序論.....1 1-1 研究背景.....1 1-2 研究目的.....1 1-2-1 不同燒結時間對CaCu3Ti4O12的變阻性質的影響.....2 1-2-2 不同燒結溫度及V2O5添加量對CuCr0.2Fe1.8O4變阻性質的影響.....2 1-2-3 燒結後不同的熱處理方式對添加氧化鉍的鎳銅鋅鈮鐵氧磁體變阻性質的影響.....3 第二章 理論基礎和文獻回顧.....4 2-1 變阻器的功用.....4 2-2 變阻性質的來源 – 雙重蕭特基能障(Double Schottky Barrier, DBS).....5 2-3 變阻器的J-E曲線在不同階段下的導電機制.....8 2-4 CaCu3Ti4O12之變阻機制.....9 2-5 CaCu3Ti4O12結構簡介.....11 2-6 尖晶石鐵氧磁體簡介.....12 2-7 電磁干擾濾波器(EMI filter)如何避免元件受到EMI影響.....15 2-8 阻抗分析法.....16 第三章 實驗方法.....22 3-1 不同燒結時間對CaCu3Ti4O12的變阻性質的影響.....23 3-1-1 粉末製備.....23 3-1-2 試片製備.....24 3-1-3 材料特性分析.....24 3-2 不同燒結溫度及V2O5添加量對CuCr0.2Fe1.8O4變阻性質的影響.....25 3-2-1 粉末製備.....26 3-2-2 試片製備.....26 3-2-3 材料特性分析.....26 3-3 燒結後不同的熱處理方式對添加氧化鉍的鎳銅鋅鈮鐵氧磁體變阻性質的影響.....28 3-3-1 粉末製備.....29 3-3-2 試片製備.....29 3-3-3 材料特性分析.....29 第四章 實驗結果與討論.....31 4-1 不同燒結時間對CaCu3Ti4O12的變阻性質的影響.....31 4-2 不同燒結溫度及V2O5添加量對CuCr0.2Fe1.8O4變阻性質的影響.....36 4-3 燒結後不同的熱處理方式對添加氧化鉍的鎳銅鋅鈮鐵氧磁體變阻性質的影響.....47 第五章 結論.....61 參考文獻.....62 附錄.....68 表目錄 表1-1 銅離子於不同配位數下的離子半徑.....2 表2-1 3d過渡金屬離子在正八面體和正四面體的晶場穩定能.....14 表3-1 起始原料的藥品規格及廠牌.....22 表4-1 圖4-4中圓圈的覆蓋區域的能量散佈光譜分析結果.....33 表4-2 圖4-13中圓圈的覆蓋區域的能量散佈光譜分析結果.....41 表4-3 圖4-31至圖4-35中不同位置的EDS分析結果 55 表4-4 以950℃燒結的試片的破斷面(FS)和抛光面(PS)的XPS成份分析結果.....55 表4-5 試片於室溫下的非線性係數(α, 1~10 mA/cm2).....57 表A-1 CuCr0.2Fe1.8O4試片中尖晶石相的單位晶胞邊長.....68 表A-2 若V2O5完全沒有固溶至尖晶石相中,各種CuCr0.2Fe1.8O4試片的理論密度.....68 表A-3 若V2O5完全固溶至尖晶石相中,各種CuCr0.2Fe1.8O4試片的理論密度.....69 表A-4 CuCr0.2Fe1.8O4試片的相對體密度.....69 圖目錄 圖2-1 電源或訊號來源與變阻器及工作元件之間的電路配置.....4 圖2-2 變阻器的(a)實際和(b)模擬微結構圖.....4 圖2-3 形成雙重蕭特基能障(Double Schottky Barrier)的示意圖.....5 圖2-4 外加電壓作用於蕭特基能障(Schottky Barrier)時的能帶示意圖.....6 圖2-5 ZnO變阻器中,各種缺陷位置分佈的示意圖.....7 圖2-6 ZnO變阻器中,各種缺陷能階的能量狀態.....7 圖2-7 變阻器作對數運算後的J-E曲線.....8 圖2-8 越過能障的熱電子撞擊反向空乏區的價帶使其電離產生電洞的示意圖.....9 圖2-9 (a) CaCu3Ti4O12試片的顯微結構圖、(b) 圖(a)中不同位置之間的IV曲線圖.....10 圖2-10 CaCu3Ti4O12以1100℃分別持溫3小時和20小時的試片的IV曲線和微結構圖.....10 圖2-11 CaCu3Ti4O12的單位晶胞.....12 圖2-12 尖晶石鐵氧磁體的單位晶胞.....13 圖2-13 接上EMI濾波器後,在不同頻率下輸出訊號的強度.....15 圖2-14 不同輸入和輸出阻抗的EMI濾波器線路配置.....16 圖2-15 電阻在阻抗圖中的位置.....17 圖2-16 電容在阻抗圖中的位置.....17 圖2-17 電感在阻抗圖中的位置.....18 圖2-18 電阻與電容並聯後的等效電路於阻抗圖中之曲線.....19 圖2-19 電阻與電容並聯後再串聯的等效電路於阻抗圖中之曲線.....21 圖3-1 CaCu3Ti4O12實驗流程圖.....23 圖3-2 CuCr0.2Fe1.8O4-V2O5實驗流程圖.....25 圖3-3 Ni0.2881Cu0.1825Zn0.4802Nb0.0096Fe2.0168O4-Bi2O3實驗流程圖.....28 圖4-1 CCTO1和CCTO20的電場與電流密度的對數圖.....31 圖4-2 CCTO1試片經過950℃熱蝕後的掃瞄式電子顯微鏡相片.....31 圖4-3 CCTO20試片經過950℃熱蝕後的掃瞄式電子顯微鏡相片.....32 圖4-4 (a)CCTO1和(b)CCTO20在穿透式電子顯微鏡下的高角度環形暗場顯微影像.....32 圖4-5CCTO20拋光面的XPS實驗結果.....33 圖4-6CCTO20破斷面的XPS實驗結果.....34 圖4-7 以1000℃煆燒後的X光繞射圖.....36 圖4-8 不同燒結溫度下各種CuCr0.2Fe1.8O4試片的體密度.....36 圖4-9 添加0.5mol% V2O5並以(a)900℃、(b)950℃、(c)1000℃燒結二小時的試片,以低於燒結溫度50℃作熱蝕後的掃瞄式電子顯微鏡相片.....37 圖4-10 添加1mol% V2O5並以(a)900℃、(b)950℃、(c)1000℃燒結二小時的試片,以低於燒結溫度50℃作熱蝕後的掃瞄式電子顯微鏡相片.....38 圖4-11 添加2mol% V2O5並以(a)900℃、(b)950℃、(c)1000℃燒結二小時的試片,以低於燒結溫度50℃作熱蝕後的掃瞄式電子顯微鏡相片.....39 圖4-12 在不同的配方和燒結溫度下,各種試片的平均粒徑.....40 圖4-13 添加1mol% V2O5並以900℃燒結的CuCr0.2Fe1.8O4試片在穿透式電子顯微鏡下的高角度環形暗場顯微影像.....40 圖4-14 添加2mol% V2O5並以900℃燒結的CuCr0.2Fe1.8O4試片,其破斷面中銅(Cu 2p)的X光電子能譜.....41 圖4-15 添加2mol% V2O5並以900℃燒結的CuCr0.2Fe1.8O4試片,其拋光面中銅(Cu 2p)的X光電子能譜.....42 圖4-16 各種CuCr0.2Fe1.8O4試片在室溫下的阻抗圖,代號05、1、2分別代表V2O5的添加量為0.5、1、2mol%,後方的溫度代表試片的燒結溫度.....43 圖4-17 CuCr0.2Fe1.8O4試片的晶粒導電活化能.....43 圖4-18 添加(a)0.5mol%、(b)1mol%、(c)2mol% V2O5的CuCr0.2Fe1.8O4試片在不同燒結溫度下的J-E對數曲線.....44 圖4-19 CuCr0.2Fe1.8O4試片的非線性係數.....45 圖4-20 Ni0.2881Cu0.1825Zn0.4802Nb0.0096Fe2.0168O4-Bi2O3粉末以5℃/min和10℃/min降溫的熱重曲線.....47 圖4-21 粉末煆燒後的X光繞射圖.....48 圖4-22 以900℃燒結的試片的X光繞射圖.....48 圖4-23 以950℃燒結的試片的X光繞射圖.....49 圖4-24 圖4-22和圖4-23的局部放大圖.....49 圖4-25 (a)Q900、(b)F900、(c)A900、(d)Q950、(e)F950、(f)A950的掃描式電子顯微鏡相片.....50 圖4-26 A950倍率較大的掃描式電子顯微鏡相片,白色圓圈標示著晶粒邊界的析出物.....50 圖4-27 (a)F950和(b)A950的高角度環形暗場(high-angle annular dark-field, HAADF)影相.....51 圖4-28 位於圖4-27中黑色直線處的EDS線掃描結果.....51 圖4-29 (a)F950和(b)A950的高角度環形暗場(high-angle annular dark-field, HAADF)影相.....52 圖4-30 F950的(a)明視野圖、(b)位置1的電子繞射圖,此圖案所代表的結晶相為BiFeO3(86-1518)、(c)位置2的電子繞射圖,此圖案所代表的結晶相為尖晶石鐵氧磁體(65-3107).....52 圖4-31 F950的(a)明視野圖及(b)位置3的電子繞射圖,此圖案所代表的結晶相為鉍鈮焦綠石相.....53 圖4-32 F950的(a)明視野圖及(b)位置4的電子繞射圖,從圖中可看到代表非晶質的圓環.....53 圖4-33 A950的(a)明視野圖及(b)位置5的電子繞射圖,此圖案所代表的結晶相為BiFeO3 (86-1518).....54 圖4-34 A950的(a)明視野圖及(b)位置7的電子繞射圖,此圖案所代表的結晶相為鉍鈮焦綠石相.....54 圖4-35 以900℃燒結的試片在30℃時,在不同頻率下的相對介電常數.....56 圖4-36 以950℃燒結的試片在30℃時,在不同頻率下的相對介電常數.....56 圖4-37 試片於室溫下的J-E對數曲線圖.....57 圖4-38 試片在950℃燒結、降溫和以以650℃作熱處理時,鉍鐵二次相的反應狀態和厚度的示意圖.....58 圖4-39 試片在不同頻率下的導磁係數的(a)實部和(b)虛部.....59

    [1] D. R. Clarke, "Varistor ceramics," J. Am. Ceram. Soc., 82 [3] 485~502 (1999)
    [2] C. J. Frosch, "Improved silicon carbide varistors," Bell. Lab. Rec., 32, 336~340 (1954)
    [3] H. F. Dienel, "Silicon carbide varistors: properties and construction," Bell Lab. Rec., 34, 407~411 (1956)
    [4] M. F.Yan, W. W. Rhodes, "Preparation and properties of TiO2 varistors," Appl. Phys. Lett., 40 [6] 536~537 (1981)
    [5] M. Fujimoto, Y. M. Chiang, A. Roshko, W. D. Kingery, "Microstructure and electrical properties of sodium-diffused and potassium-diffused SrTiO3 barrier-layer capacitors exhibiting varistor behavior," J. Am. Ceram. Soc., 68 [11] C-300~C-303 (1985)
    [6] S. A. Pianaro, P. R. Bueno, E. Longo, J. A. Varela, "A new SnO2-based varistor system," J. Mater. Sci. Lett., 14 [10] 692~694 (1995)
    [7] V. Makarov, M. Trontelj, “Novel varistor material based on tungsten oxide,” J. Mater. Sci. Lett., 13 [13] 937~939 (1994)
    [8] S. Y. Chung, I. D. Kim, S. J. L. Kang, "Strong nonlinear current-voltage behaviour in perovksite-derivative calcium copper titanate," Nat. Mater., 3 [11] 774~778 (2004)
    [9] Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, "Preparation and electromagnetic properties of ferrite-cordierite composites," Mater. Lett., 44 [5] 279~283 (2000)
    [10] T. M. Feichtinger, M. Rath, T. Pürstinger, G. F. Engel, "Highly integrated multilayer varistors for ESD/EMI filtering applications," CARTS USA, 113~125 (2006)
    [11] A. Rafferty, Y. Gun’ko, R. Raghavendra, "An investigation of co-fired varistor - NiZn ferrite multilayers," Mater. Res. Bull., 44 [4] 747~752 (2009).
    [12] N. Ohashi, Y. Terada, T. Ohgaki, S. Tanaka, T. Tsurumi, O. Fukunaga, H. Haneda, J. Tanaka, "Synthesis of ZnO bicrystal doped with Co or Mn and their electrical properties," Jpn. J. Appl. Phys., 38 [9A] 5028~5032 (1999)
    [13] M. Matsuoka, T. Masuyama, Y. Iida, "Voltage nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide," Jpn. J. Appl. Phys., 8, 1275~1276 (1969)
    [14] T. K. Gupta, "Application of zinc oxide varistors," J. Am. Ceram. Soc., 73 [7] 1817~1840 (1990)
    [15] F. Stucki, F. Greuter, "Key role of oxygen at zinc oxide varistor grain boundaries," Appl. Phys. Lett., 57 [5] 446~448 (1990)
    [16] N. M. Sammes, G. J. Gainsford, "Phase stability and oxygen ion conduction in Bi2O3 – Pr6O11," Sol. Stat. Ion., 62 [3-4] 179~184 (1993)
    [17] J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby, A. W. Sleight, "Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of “SrCu3Ti4O12”," Chem. Mater., 16 [25] 5223~5225 (2004)
    [18] Y. Zhu, K. Mimura, M. Isshiki, "Oxidation mechanism of copper at 623-1073K," Mater. Trans. 43 [9] 2173~2176 (2002)
    [19] J. Zhu, L. Zhang, Y. Deng, B. Liu, L. Dong, F. Gao, K. Sun, L. Dong, Y. Chen, "Influence of preparation method on the catalytic activities of CuO/Ce0.67Zr0.33O2 catalysts in CO + O2 reaction," Appl. Catal. B: Environ. 96 [3-4] 449~457 (2010)
    [20] http://materias.qi.fcen.uba.ar/file.php/16/Tablas/Radios_atomicos_e_ionicos.pdf
    [21] Y. K. Jeong, G. M. Choi, "Nonstiochiometry and electrical conduction of CuO," J. Phys. Chem. Sol., 57 [1] 81~84 (1996)
    [22] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Sol. Stat. Chem., 151 [2] 323~325 (2000)
    [23] T. T. Fang, H. K. Shiau, “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12,” J. Am. Ceram. Soc., 87 [11] 2072~2079 (2004)
    [24] T. B. Adams, D. C. Sinclair, A. R. West, “Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics,” Phys. Rev. B, 73 [9] 094124-1~9 (2006)
    [25] T. B. Adams, D. C. Sinclair, A. R. West, “Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics,” J. Am. Ceram. Soc., 89 [10] 3129~3135 (2006)
    [26] C. Wang, H. J. Zhang, P. M. He, G. H. Cao, “Ti-rich and Cu-poor grain-boundary layers of CaCu3Ti4O12 detected by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., 91 [5] 052910-1~3 (2007)
    [27] V.P.B. Marques, P. R. Bueno, A. Z. Simões, M. Cilense, J. A. Varela, E. Longo and E. R. Leite, “Nature of potential barrier in (Ca1/4,Cu3/4)TiO3 polycrystalline perovskite,” Sol. Stat. Commun., 138 [1] 1~4 (2006)
    [28] V.P.B. Marques, A. Ries, A. Z. Simões, M. A. Ramírez, J. A. Varela, and E. Longo, “Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum,” Ceram. Int., 33 [7] 1187~1190 (2007)
    [29] P. Leret, J. F. Fernandez, J. de Frutos, D. Fernández-Hevia, “Nonlinear I-V electrical behaviour of doped CaCu3Ti4O12 ceramics,” J. Europ. Ceram. Soc., 27 [13-15] 3901~3905 (2007)
    [30] Y. H. Lin, J. Cai, M. Li, C. W. Nan, “High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12 ceramics,” Appl. Phys. Lett., 88 [17] 172902-1~3 (2006)
    [31] K. S. De, J. Ghose, K. S. R. C. Murthy, "Electrical properties of the CuCr2O4 spinel catalyst," J. Sol. Stat. Chem., 43 [3] 261~266 (1982)
    [32] M. Fujimoto, "Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni-Zn-Cu ferrite," J. Am. Ceram. Soc. 77 [11] 2873~2878 (1994)
    [33] A. Barba, C. Clausell, J. C. Jarque, M. Monzó, "ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate," J. Eur. Ceram. Soc. 31 [12] 2119~2128 (2011)
    [34] C. Venkateshwarlu, D. Ravinder, “High temperature thermoelectric power studies of Cu-Cr ferrites,” J. Alloy. Compd., 397 [1-2] 5~8 (2005)
    [35] J. Wu, C. S. Xie, K. J. Huang, A. H. Wang, Y. Y. Wang, “Low temperature sintering of doped ZnO – V2O5 varistors,” J. Inorg. Mater., 19 [1] 239~243 (2004)
    [36] L. G. Van Uitert, "Dielectric properties of and conductivity in ferrites," Proceeding of the IRE, 44 [10] 1294~1303 (1956)
    [37] H. Inaba, T. Abe, Y. Kitano, and J. Shimomura, "Mechanism of core loss and the grain-boundary structure of niobium-doped manganese-zinc ferrite," J. Solid Stat. Chem., 121 [1] 117~128 (1996)
    [38] A. J. Moulson, J. M. Herbert, "Electroceramics Materials‧Properties‧Applications," Chapman and Hall, London, p.131, 1990.
    [39] G. E. PiKe, “Semiconductiong polycrystalline ceramics,” p.731~754 in Materials Science and Technology. Edited by M. V. Swain. VCH, Weinheim, Germany (1994)
    [40] G. D. Mahan, "Intrinsic defects in ZnO varistors," J. Appl. Phys., 54 [7] 3825~3832 (1983)
    [41] G. E. Pike, “Electronic properties of ZnO varistor: A new model,” p.369~380 in "Grain boundaries in semiconductors," Material Research Society Symposium Proceedings, 1982, North-Holland, Amsterdam, The Netherlands.
    [42] A. Deschanvres, B. Raveau, F. Tollemer, “Substitution of copper for a divalent metal in titanates of perovskite type,” Bull. Soc. Chim. Fr., 11 4077~4078 (1967)
    [43] B. Bochu, M.N. Deschizeaux, J.C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12,” J. Sol. Stat. Chem., 29 [2] 291~298 (1979)
    [44] S. M. Moussa, B. J. Kennedy, “Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3”, Materials Research Bulletin, 36 [13-14] 2525~2529 (2001)
    [45] W. D. Kingery, H. K. Bowen, D. R. Uhlmann著,譯者陳皇鈞,「陶瓷材料概論 (Introduction to Ceramics)」,曉園出版社,臺北市,章節19.3,pp.933~940,1988年4月初版
    [46] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節3.1.9,pp. 80~83,2001年11月
    [47] A. R. West, "Solid state chemistry and its applications," John Wiley & Sons, New York, chapter 8, pp.263~317, 1985.
    [48] J. H. Van Vleck, "Theory of the variations in paramagnetic anisotropy among different salts of the iron group," Phys. Rev. 41 208~215 (1932)
    [49] I. Z. Rahman, T. T. Ahmed, "A study on Cu substituted chemically processed Ni-Zn-Cu ferrites," J. Magn. Magn. Mater. 290-291 [2] 1576~1579 (2005)
    [50] J. Töpfer, J. Mürbe, A. Angermann, S. Kracunovska, S. Barth, F. Bechtold, "Soft ferrite materials for multilayer inductors," Int. J. Appl. Ceram. Technol. 3 [6] 455~462 (2006)
    [51] L. Schramm, G. Behr, W. Löser, K. Wetzig, "Thermodynamic reassessment of the Cu-O phase diagram," J. Phase Equilib. Diff. 26 [6] 605~621 (2005)
    [52] D. Sakellari, V. Tsakaloudi, E. K. Polychroniadis, V. Zaspalis, " Microstructural phenomena controlling losses in NiCuZn - ferrites as studied by transmission electron microscopy," J. Am. Ceram. Soc. 91 [2] 366~371 (2008)
    [53] A. Okamoto, K. Kitamura, T. Yoshid, "Discontinuous grain growth in the sintering of copper-ferrous ferrites," J. Jpn. Soc. Powder Powder Metall. 21 [6] 177~182 (1974)
    [54] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節5.1.2,pp. 157~167,2001年11月
    [55] F. Mayer, “Non-linear conduction and low-pass effects their combined use in new system oriented EMC-suppression techniques,” p.348~351 in Electromagnetic Compatibility, 1993. Symposium Record., 1993 IEEE International Symposium on date: 9-13 Aug. 1993, Dallas, TX, USA.
    [56] R. Redl, “Power electronics and electromagnetic compatibility,” Vol. 1, p.15~21 in Proc. PESC’96 Record., 27th Annual IEEE on date 23-27 Jun. 1996, Baveno, Italy.
    [57] 林慶仁、宋自恆,「傳導性EMI量測系統的架構及原理」,新電子科技雜誌 186 九月號1~11 (2001)
    [58] Murata Manufacturing Co., Ltd. (www.murata.com) “Basics of EMI filters”
    [59] 邱碧秀,「電子陶瓷材料」,徐氏基金會,臺北市,p.129~153,1988年
    [60] D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance,” J. Appl. Phys., 66 [8] 3850~3856 (1989)
    [61] J. C. Wurst, J. A. Nelson, “Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics,” J. Am. Ceram. Soc., 55 [2] 109 (1972)
    [62] A. J. Moulson and J. M. Herbert, " Electroceramics Materials.properties.applications," Chapman and Hall, London, p.259~262, 1990.
    [63] N. S. Mclntyre, M. G. Cook, "X-Ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper," Anal. Chem., 47 [13] 2208~2213 (1975)
    [64] T. B. Adams, D. C. Sinclair, and A. R. West, "Decomposition reactions in CaCu3Ti4O12 ceramics," J. Am. Ceram. Soc., 89 [9] 2833~2838 (2006)
    [65] J. D. Stroupe, "An X-ray diffraction study of the copper chromites and of the “copper-chromium oxide” catalyst," J. Am. Chem. Soc., 71 [2] 569~572 (1949)
    [66] B. Liu, K. Zhou, Z. Li, D. Zhang and L. Zhang, "Microstructure and DC electrical conductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres," Mater. Res. Bull. 45 [11] 1668~1671 (2010)
    [67] C. G. Koops, "On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies," Phys. Rev. 83 [1] 121~124 (1951)
    [68] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節3.1.12,pp. 92~106,2001年11月
    [69] M. W. Lufaso, T. A. Vanderah, I. M. Pazos, I. Levin, R. S. Roth, J. C. Nino, V. Provenzano and P. K. Schenck, "Phase formation, crystal chemistry, and properties in the system Bi2O3-Fe2O3-Nb2O5," J. Sol. Stat. Chem. 179 [12] 3900~3910 (2006)
    [70] M. Valant and D. Suvorov, "The Bi2O3-Nb2O5-NiO phase diagram," J. Am. Ceram. Soc. 88 [9] 2540~2543 (2005)
    [71] I. Bryntse, "Phase-analysis and electron-microscopy studies of the systems Bi2O3-CuO-TiO2 and Bi2O3-CuO-Nb2O5," Europ. J. Sol. Stat. Inorg. Chem. 28 [2] 481~492 (1991)
    [72] D. Liu, Y. Liu, S. Q. Huang, and X. Yao, "Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5 based dielectric ceramics," J. Am. Ceram. Soc. 76 [8] 2129~2132 (1993)
    [73] J. Lu, L. J. Qiao, P. Z. Fu, and Y. C. Wu, "Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal," J. Crystal Growth 318 [1] 936~941 (2011)
    [74] X. H. Zhu, E. Defaÿ, Y. Lee, B. André, M. Aïd, J. L. Zhu, D. Q. Xiao, and J. G. Zhu, "High permittivity Bi24Fe2O39 thin films prepared by a low temperature process," Appl. Phys. Lett. 97 232903 pp.1~3 (2010)
    [75] J. Lu, M. Schmidt, P. Lunkenheimer, A. Pimenov, A. A. Mukhin, V. D. Travkin, and A. Loidl, "Magnetic susceptibility, phonos and dielectric constant of single crystalline BiFeO3," J. Phys.:Conf. Series 200 012106 pp.1~4 (2010)
    [76] Y. A. Park, K. M. Song, K. D. Lee, C. J. Won, and N. Hur, "Effect of antiferromagnetic order on the dielectric properties of Bi2Fe4O9," Appl. Phys. Lett. 96 092506 pp.1~3(2010)
    [77] A. Z. Simões, C. S. Riccardi, M. L. Dos Santos, F. González Garcia, E. Longo, and J. A. Varela, "Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films," Mater. Res. Bull. 44 [8] 1747~1752 (2009)
    [78] H. Igarashi and K. Okazaki, "Effects of porosity and grain size on the magnetic properties of NiZn ferrite," J. Am. Ceram. Soc. 60 [1-2] 51~54 (1977)
    [79] M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, "Reaction pathways in the solid state synthesis of multiferroic BiFeO3," J. Eur. Ceram. Soc. 31 [16] 3047~3053 (2011)
    [80] T. Nakamura, T. Tsutaoka, K. Hatakeyama, "Frequency dispersion of permeability in ferrite composite materials," J. Magn. Magn. Mater. 138 [3] 319~328 (1994)

    下載圖示 校內:2019-02-14公開
    校外:2019-02-14公開
    QR CODE