| 研究生: |
梅立人 Mei, Li-Then |
|---|---|
| 論文名稱: |
非當量銅添加劑在不同熱處理條件下對三種含銅氧化物變阻性質之影響 Nonstoichiometric Copper Oxide Addition and Thermal Treatment Effects on the Varistor Properties of Three Copper-Containing Oxides |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 銅析出 、變阻器 、CaCu3Ti4O12 、尖晶石鐵氧磁體 、EMI |
| 外文關鍵詞: | copper precipitation, CaCu3Ti4O12, spinel ferrite, varistor, EMI |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以固態反應法和燒結的方式製作CaCu3Ti4O12和含銅尖晶石鐵氧磁體,藉由改變配方或熱處理條件,使已具有高電容量或是高導磁係數的材料同時具有變阻性質,以整合變阻器和電感或是電容元件的防靜電脈衝(ESD)和抗電磁干擾(EMI)功能。CaCu3Ti4O12和含銅尖晶石鐵氧磁體在經過特定的熱處理後會產生異常晶粒成長的現象,此時晶粒內部份的銅離子會析出到晶粒邊界。這些位於晶粒邊界的富銅二次相為p型導電物質,可與n型半導體CaCu3Ti4O12晶粒或是鐵氧磁體晶粒形成蕭特基能障,進而使試片具有變阻性質。除了利用銅離子析出至晶粒邊界以提高晶粒邊界的受體濃度,也可添加氧化鉍於含鐵量較高的鐵氧磁體中,藉由氧化鉍與含鐵量較高的鐵氧磁體在高溫時會產生化學反應,導致靠近晶粒邊界的鐵氧磁體的含鐵量減少,使靠近晶粒邊界的鐵氧磁體的導電機構從n型轉變成p型。適當的配方及熱處理條件可以促進晶粒邊界形成蕭特基能障,進而使電容器或是電感器同時具有變阻器的功能。整合兩種元件的功能後,可降低終端電子產品的生產成本和體積。
CaCu3Ti4O12 and two kinds of copper-containing spinel ferrites were treated with different thermal process to make a material exhibiting simultaneous capacitor or inductor and varistor properties. Varistor and EMI filter can be integrated by using varistor-magnetic or varistor-dielectric materials to protect other components from electro-static discharge (ESD) and decrease electromagnetic interference (EMI) simultaneously. Integrating different kinds of passive components can reduce the final product size. The relationship between the grain-boundary composition and varistor properties were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion spectroscopy (EDS), and X-ray photoelectric spectroscopy (XPS). Abnormal grain growth occurs after specific sintering processes in CaCu3Ti4O12 and copper spinel ferrite. After abnormal grain growth, copper oxides would precipitate at grain-boundary or triple junction. The copper oxides would develop at the grain boundary as the acceptor state, forming double Schottky barriers with the n-type semiconductor grains, causing the specimens exhibit varistor property. Except using copper oxides precipitate at grain-boundary to form Schottky barrier, iron-rich ferrites added with bismuth oxide treated with suitable thermal process also can form Schottky barrier. The experimental results showed that Bi2O3 reacted and diffused into the spinel ferrite grain, forming bismuth iron compounds, causing the chemical composition near grain-boundary become iron deficient. The Fe deficiency spinel ferrite near the grain-boundary then changed to p-type conduction. The combination of the n-type semi-conductive grain interior and p-type spinel ferrite near the grain-boundary can form a double Schottky barrier, leading the specimen to exhibit varistor properties.
[1] D. R. Clarke, "Varistor ceramics," J. Am. Ceram. Soc., 82 [3] 485~502 (1999)
[2] C. J. Frosch, "Improved silicon carbide varistors," Bell. Lab. Rec., 32, 336~340 (1954)
[3] H. F. Dienel, "Silicon carbide varistors: properties and construction," Bell Lab. Rec., 34, 407~411 (1956)
[4] M. F.Yan, W. W. Rhodes, "Preparation and properties of TiO2 varistors," Appl. Phys. Lett., 40 [6] 536~537 (1981)
[5] M. Fujimoto, Y. M. Chiang, A. Roshko, W. D. Kingery, "Microstructure and electrical properties of sodium-diffused and potassium-diffused SrTiO3 barrier-layer capacitors exhibiting varistor behavior," J. Am. Ceram. Soc., 68 [11] C-300~C-303 (1985)
[6] S. A. Pianaro, P. R. Bueno, E. Longo, J. A. Varela, "A new SnO2-based varistor system," J. Mater. Sci. Lett., 14 [10] 692~694 (1995)
[7] V. Makarov, M. Trontelj, “Novel varistor material based on tungsten oxide,” J. Mater. Sci. Lett., 13 [13] 937~939 (1994)
[8] S. Y. Chung, I. D. Kim, S. J. L. Kang, "Strong nonlinear current-voltage behaviour in perovksite-derivative calcium copper titanate," Nat. Mater., 3 [11] 774~778 (2004)
[9] Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, "Preparation and electromagnetic properties of ferrite-cordierite composites," Mater. Lett., 44 [5] 279~283 (2000)
[10] T. M. Feichtinger, M. Rath, T. Pürstinger, G. F. Engel, "Highly integrated multilayer varistors for ESD/EMI filtering applications," CARTS USA, 113~125 (2006)
[11] A. Rafferty, Y. Gun’ko, R. Raghavendra, "An investigation of co-fired varistor - NiZn ferrite multilayers," Mater. Res. Bull., 44 [4] 747~752 (2009).
[12] N. Ohashi, Y. Terada, T. Ohgaki, S. Tanaka, T. Tsurumi, O. Fukunaga, H. Haneda, J. Tanaka, "Synthesis of ZnO bicrystal doped with Co or Mn and their electrical properties," Jpn. J. Appl. Phys., 38 [9A] 5028~5032 (1999)
[13] M. Matsuoka, T. Masuyama, Y. Iida, "Voltage nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide," Jpn. J. Appl. Phys., 8, 1275~1276 (1969)
[14] T. K. Gupta, "Application of zinc oxide varistors," J. Am. Ceram. Soc., 73 [7] 1817~1840 (1990)
[15] F. Stucki, F. Greuter, "Key role of oxygen at zinc oxide varistor grain boundaries," Appl. Phys. Lett., 57 [5] 446~448 (1990)
[16] N. M. Sammes, G. J. Gainsford, "Phase stability and oxygen ion conduction in Bi2O3 – Pr6O11," Sol. Stat. Ion., 62 [3-4] 179~184 (1993)
[17] J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby, A. W. Sleight, "Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of “SrCu3Ti4O12”," Chem. Mater., 16 [25] 5223~5225 (2004)
[18] Y. Zhu, K. Mimura, M. Isshiki, "Oxidation mechanism of copper at 623-1073K," Mater. Trans. 43 [9] 2173~2176 (2002)
[19] J. Zhu, L. Zhang, Y. Deng, B. Liu, L. Dong, F. Gao, K. Sun, L. Dong, Y. Chen, "Influence of preparation method on the catalytic activities of CuO/Ce0.67Zr0.33O2 catalysts in CO + O2 reaction," Appl. Catal. B: Environ. 96 [3-4] 449~457 (2010)
[20] http://materias.qi.fcen.uba.ar/file.php/16/Tablas/Radios_atomicos_e_ionicos.pdf
[21] Y. K. Jeong, G. M. Choi, "Nonstiochiometry and electrical conduction of CuO," J. Phys. Chem. Sol., 57 [1] 81~84 (1996)
[22] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Sol. Stat. Chem., 151 [2] 323~325 (2000)
[23] T. T. Fang, H. K. Shiau, “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12,” J. Am. Ceram. Soc., 87 [11] 2072~2079 (2004)
[24] T. B. Adams, D. C. Sinclair, A. R. West, “Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics,” Phys. Rev. B, 73 [9] 094124-1~9 (2006)
[25] T. B. Adams, D. C. Sinclair, A. R. West, “Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics,” J. Am. Ceram. Soc., 89 [10] 3129~3135 (2006)
[26] C. Wang, H. J. Zhang, P. M. He, G. H. Cao, “Ti-rich and Cu-poor grain-boundary layers of CaCu3Ti4O12 detected by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., 91 [5] 052910-1~3 (2007)
[27] V.P.B. Marques, P. R. Bueno, A. Z. Simões, M. Cilense, J. A. Varela, E. Longo and E. R. Leite, “Nature of potential barrier in (Ca1/4,Cu3/4)TiO3 polycrystalline perovskite,” Sol. Stat. Commun., 138 [1] 1~4 (2006)
[28] V.P.B. Marques, A. Ries, A. Z. Simões, M. A. Ramírez, J. A. Varela, and E. Longo, “Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum,” Ceram. Int., 33 [7] 1187~1190 (2007)
[29] P. Leret, J. F. Fernandez, J. de Frutos, D. Fernández-Hevia, “Nonlinear I-V electrical behaviour of doped CaCu3Ti4O12 ceramics,” J. Europ. Ceram. Soc., 27 [13-15] 3901~3905 (2007)
[30] Y. H. Lin, J. Cai, M. Li, C. W. Nan, “High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12 ceramics,” Appl. Phys. Lett., 88 [17] 172902-1~3 (2006)
[31] K. S. De, J. Ghose, K. S. R. C. Murthy, "Electrical properties of the CuCr2O4 spinel catalyst," J. Sol. Stat. Chem., 43 [3] 261~266 (1982)
[32] M. Fujimoto, "Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni-Zn-Cu ferrite," J. Am. Ceram. Soc. 77 [11] 2873~2878 (1994)
[33] A. Barba, C. Clausell, J. C. Jarque, M. Monzó, "ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate," J. Eur. Ceram. Soc. 31 [12] 2119~2128 (2011)
[34] C. Venkateshwarlu, D. Ravinder, “High temperature thermoelectric power studies of Cu-Cr ferrites,” J. Alloy. Compd., 397 [1-2] 5~8 (2005)
[35] J. Wu, C. S. Xie, K. J. Huang, A. H. Wang, Y. Y. Wang, “Low temperature sintering of doped ZnO – V2O5 varistors,” J. Inorg. Mater., 19 [1] 239~243 (2004)
[36] L. G. Van Uitert, "Dielectric properties of and conductivity in ferrites," Proceeding of the IRE, 44 [10] 1294~1303 (1956)
[37] H. Inaba, T. Abe, Y. Kitano, and J. Shimomura, "Mechanism of core loss and the grain-boundary structure of niobium-doped manganese-zinc ferrite," J. Solid Stat. Chem., 121 [1] 117~128 (1996)
[38] A. J. Moulson, J. M. Herbert, "Electroceramics Materials‧Properties‧Applications," Chapman and Hall, London, p.131, 1990.
[39] G. E. PiKe, “Semiconductiong polycrystalline ceramics,” p.731~754 in Materials Science and Technology. Edited by M. V. Swain. VCH, Weinheim, Germany (1994)
[40] G. D. Mahan, "Intrinsic defects in ZnO varistors," J. Appl. Phys., 54 [7] 3825~3832 (1983)
[41] G. E. Pike, “Electronic properties of ZnO varistor: A new model,” p.369~380 in "Grain boundaries in semiconductors," Material Research Society Symposium Proceedings, 1982, North-Holland, Amsterdam, The Netherlands.
[42] A. Deschanvres, B. Raveau, F. Tollemer, “Substitution of copper for a divalent metal in titanates of perovskite type,” Bull. Soc. Chim. Fr., 11 4077~4078 (1967)
[43] B. Bochu, M.N. Deschizeaux, J.C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12,” J. Sol. Stat. Chem., 29 [2] 291~298 (1979)
[44] S. M. Moussa, B. J. Kennedy, “Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3”, Materials Research Bulletin, 36 [13-14] 2525~2529 (2001)
[45] W. D. Kingery, H. K. Bowen, D. R. Uhlmann著,譯者陳皇鈞,「陶瓷材料概論 (Introduction to Ceramics)」,曉園出版社,臺北市,章節19.3,pp.933~940,1988年4月初版
[46] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節3.1.9,pp. 80~83,2001年11月
[47] A. R. West, "Solid state chemistry and its applications," John Wiley & Sons, New York, chapter 8, pp.263~317, 1985.
[48] J. H. Van Vleck, "Theory of the variations in paramagnetic anisotropy among different salts of the iron group," Phys. Rev. 41 208~215 (1932)
[49] I. Z. Rahman, T. T. Ahmed, "A study on Cu substituted chemically processed Ni-Zn-Cu ferrites," J. Magn. Magn. Mater. 290-291 [2] 1576~1579 (2005)
[50] J. Töpfer, J. Mürbe, A. Angermann, S. Kracunovska, S. Barth, F. Bechtold, "Soft ferrite materials for multilayer inductors," Int. J. Appl. Ceram. Technol. 3 [6] 455~462 (2006)
[51] L. Schramm, G. Behr, W. Löser, K. Wetzig, "Thermodynamic reassessment of the Cu-O phase diagram," J. Phase Equilib. Diff. 26 [6] 605~621 (2005)
[52] D. Sakellari, V. Tsakaloudi, E. K. Polychroniadis, V. Zaspalis, " Microstructural phenomena controlling losses in NiCuZn - ferrites as studied by transmission electron microscopy," J. Am. Ceram. Soc. 91 [2] 366~371 (2008)
[53] A. Okamoto, K. Kitamura, T. Yoshid, "Discontinuous grain growth in the sintering of copper-ferrous ferrites," J. Jpn. Soc. Powder Powder Metall. 21 [6] 177~182 (1974)
[54] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節5.1.2,pp. 157~167,2001年11月
[55] F. Mayer, “Non-linear conduction and low-pass effects their combined use in new system oriented EMC-suppression techniques,” p.348~351 in Electromagnetic Compatibility, 1993. Symposium Record., 1993 IEEE International Symposium on date: 9-13 Aug. 1993, Dallas, TX, USA.
[56] R. Redl, “Power electronics and electromagnetic compatibility,” Vol. 1, p.15~21 in Proc. PESC’96 Record., 27th Annual IEEE on date 23-27 Jun. 1996, Baveno, Italy.
[57] 林慶仁、宋自恆,「傳導性EMI量測系統的架構及原理」,新電子科技雜誌 186 九月號1~11 (2001)
[58] Murata Manufacturing Co., Ltd. (www.murata.com) “Basics of EMI filters”
[59] 邱碧秀,「電子陶瓷材料」,徐氏基金會,臺北市,p.129~153,1988年
[60] D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance,” J. Appl. Phys., 66 [8] 3850~3856 (1989)
[61] J. C. Wurst, J. A. Nelson, “Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics,” J. Am. Ceram. Soc., 55 [2] 109 (1972)
[62] A. J. Moulson and J. M. Herbert, " Electroceramics Materials.properties.applications," Chapman and Hall, London, p.259~262, 1990.
[63] N. S. Mclntyre, M. G. Cook, "X-Ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper," Anal. Chem., 47 [13] 2208~2213 (1975)
[64] T. B. Adams, D. C. Sinclair, and A. R. West, "Decomposition reactions in CaCu3Ti4O12 ceramics," J. Am. Ceram. Soc., 89 [9] 2833~2838 (2006)
[65] J. D. Stroupe, "An X-ray diffraction study of the copper chromites and of the “copper-chromium oxide” catalyst," J. Am. Chem. Soc., 71 [2] 569~572 (1949)
[66] B. Liu, K. Zhou, Z. Li, D. Zhang and L. Zhang, "Microstructure and DC electrical conductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres," Mater. Res. Bull. 45 [11] 1668~1671 (2010)
[67] C. G. Koops, "On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies," Phys. Rev. 83 [1] 121~124 (1951)
[68] 山口喬、柳田博明、岡本祥一、近桂一郎編著,黃忠良譯,「磁性陶瓷」,復漢出版社,台南,章節3.1.12,pp. 92~106,2001年11月
[69] M. W. Lufaso, T. A. Vanderah, I. M. Pazos, I. Levin, R. S. Roth, J. C. Nino, V. Provenzano and P. K. Schenck, "Phase formation, crystal chemistry, and properties in the system Bi2O3-Fe2O3-Nb2O5," J. Sol. Stat. Chem. 179 [12] 3900~3910 (2006)
[70] M. Valant and D. Suvorov, "The Bi2O3-Nb2O5-NiO phase diagram," J. Am. Ceram. Soc. 88 [9] 2540~2543 (2005)
[71] I. Bryntse, "Phase-analysis and electron-microscopy studies of the systems Bi2O3-CuO-TiO2 and Bi2O3-CuO-Nb2O5," Europ. J. Sol. Stat. Inorg. Chem. 28 [2] 481~492 (1991)
[72] D. Liu, Y. Liu, S. Q. Huang, and X. Yao, "Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5 based dielectric ceramics," J. Am. Ceram. Soc. 76 [8] 2129~2132 (1993)
[73] J. Lu, L. J. Qiao, P. Z. Fu, and Y. C. Wu, "Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal," J. Crystal Growth 318 [1] 936~941 (2011)
[74] X. H. Zhu, E. Defaÿ, Y. Lee, B. André, M. Aïd, J. L. Zhu, D. Q. Xiao, and J. G. Zhu, "High permittivity Bi24Fe2O39 thin films prepared by a low temperature process," Appl. Phys. Lett. 97 232903 pp.1~3 (2010)
[75] J. Lu, M. Schmidt, P. Lunkenheimer, A. Pimenov, A. A. Mukhin, V. D. Travkin, and A. Loidl, "Magnetic susceptibility, phonos and dielectric constant of single crystalline BiFeO3," J. Phys.:Conf. Series 200 012106 pp.1~4 (2010)
[76] Y. A. Park, K. M. Song, K. D. Lee, C. J. Won, and N. Hur, "Effect of antiferromagnetic order on the dielectric properties of Bi2Fe4O9," Appl. Phys. Lett. 96 092506 pp.1~3(2010)
[77] A. Z. Simões, C. S. Riccardi, M. L. Dos Santos, F. González Garcia, E. Longo, and J. A. Varela, "Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films," Mater. Res. Bull. 44 [8] 1747~1752 (2009)
[78] H. Igarashi and K. Okazaki, "Effects of porosity and grain size on the magnetic properties of NiZn ferrite," J. Am. Ceram. Soc. 60 [1-2] 51~54 (1977)
[79] M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, "Reaction pathways in the solid state synthesis of multiferroic BiFeO3," J. Eur. Ceram. Soc. 31 [16] 3047~3053 (2011)
[80] T. Nakamura, T. Tsutaoka, K. Hatakeyama, "Frequency dispersion of permeability in ferrite composite materials," J. Magn. Magn. Mater. 138 [3] 319~328 (1994)