簡易檢索 / 詳目顯示

研究生: 吳宜榛
Wu, Yi-Chen
論文名稱: 表面增顯紅外光吸收光譜現址偵測分子在金表面修飾
In Situ Investigation of Molecular Immobilization on Au Surface by Surface-Enhanced Infrared Absorption Spectroscopy
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 69
中文關鍵詞: 生醫感測器全反射表面增顯紅外光自組性單分子膜生物接合氨基二戊鐵
外文關鍵詞: Biosensor, Surface Enhanced Infrared Adsorption Spectroscopy, Self-Assemble Monolayer, Bioconjugation, Aminoferrocene
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物分子利用共價鍵修飾在基材上已經廣泛運用於生醫感測器、生醫材料等,隨著生物科技的進步與生醫感測器等的蓬勃發展,共價鍵修飾獲得了越來越多的關注,其步驟包含:(1)在基材上修飾自組性單分子膜,(2)利用交聯劑,如:碳二亞胺,與自組性單分子膜之官能基反應形成活化層,(3)活化層再與欲修飾於基材表面之生物辨識分子反應,如抗體、DNA等,以共價鍵—肽鍵連接。然而目前的修飾仍是依據經驗法則,不同文獻所使用的修飾條件更是大相逕庭,缺乏基礎理論作為修飾的依據。因此本研究致力於探討生物分子修飾之動態過程,以提供修飾的依據,進而改善生醫感測器。表面增顯紅外光技術結合衰弱式全反射(ATR-SEIRAS)的分析由於具有高靈敏度、表面選擇性與低背景溶液干擾等優點,逐漸受到重視,已成功應用於修飾過程的界面量測。本實驗利用衰弱式全反射表面增顯紅外光即時現址觀測分子層的修飾,探討11-巰基烷酸做為自組性單分子膜修飾於金表面,利用EDC/NHS活化其表面,並使11-巰基烷酸與氨基二戊鐵(Aminoferrocene)以肽鍵連接,藉SEIRAS的觀測,而得到較佳的修飾參數。

    Covalent binding has been wildly used in biosensors and biomaterials. With the vigorous development of biosensors, covalent immobilization is getting more and more attention. The process of forming covalent bonds on biosensors including: (1) forming a self-assembly monolayer (SAM), (2) activating the SAM with crosslinkers to form an active layer, and then (3) covalent attachment of biomolecules. However, the immobilization parameters are still based on experience, and vary from one study to another. In this study, 11-mercaptoundecanoic acid (MUA) was used to form SAM on gold surface, activating the surface through EDC/NHS, and then formed peptide with aminoferrocene (AmFc). Known for high sensitivity, low background interference, and in-situ observation, attenuated total reflection surface enhanced infrared adsorption spectroscopy (ATR-SEIRAS) was used to investigate the immobilization process and then to find a relative well optimized parameters.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Immobilization 4 1.3 Covalent Immobilization 7 1.3.1 Self-Assembled Monolayer (SAM) 7 1.3.2 Conjugation 12 1.3.3 Previous Studies of Covalent Immobilization 15 1.4 Aminoferrocene 18 1.5 Experimental Technique 21 1.5.1 Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) 21 1.5.2 Enhancement mechanisms of SEIRAS 24 1.5.3 ATR-SEIRAS 26 1.5.4 Enhancement Metal Film 29 1.6 Purpose of This Study 33 Chapter 2 Materials and Methods 34 2.1 Detergents and Apparatus 34 2.1.1 Chemical Reagents 34 2.2.2 Solutions 35 2.1.3 Apparatus 36 2.2 Experimental Procedure 37 2.2.1. Preparation of Gold Film 37 2.2.2 Gold Film Pretreatment 39 2.2.3 Spectra Collection 41 2.2.4 Spectrum Processing 43 Chapter 3 Results and Discussion 44 3.1 Cyclic Voltammogram 44 3.2 Formation of Self-Assemble Monolayers 46 3.3 Formation of Active Layers 52 3.4 Formation of Peptide Bonds 57 Chapter 4 Conclusion and Future Work 62 Acknowledgement 63 References 64 Curriculum Vitae 69

    1. Thevenot, D.R., et al., Electrochemical Biosensors: Recommended Definitions and Classification, in Pure and Applied Chemistry. 1999. p. 2333.
    2. Clark, L.C. and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 1962. 102(1): p. 29-45.
    3. Murugaboopathi, G., et al., Applications of Biosensors in Food Industry. 2013, Biosciences Biotechnology Research Asia.
    4. Rodriguez-Mozaz, S., et al., Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry, 2004. 76(4): p. 723-752.
    5. Yoo, E.H. and Lee, S.Y., Glucose biosensors: an overview of use in clinical practice. Sensors, 2010. 10(5): p. 4558-4576.
    6. Cooper, M.A., Biosensor profiling of molecular interactions in pharmacology. Current Opinion in Pharmacology, 2003. 3(5): p. 557-562.
    7. Sam, S., et al., Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir, 2010. 26(2): p. 809-814.
    8. Jegannathan, K.R., et al., Production of biodiesel using immobilized lipase—a critical review. Critical Reviews in Biotechnology, 2008. 28(4): p. 253-264.
    9. Nelson, J.M. and Griffin, E.G., Adsorption of invertase. Journal of the American Chemical Society, 1916. 38(5): p. 1109-1115.
    10. Zhang, B., et al., Enzyme immobilization for biodiesel production. Applied Microbiology and Biotechnology, 2012. 93(1): p. 61-70.
    11. Zhao, X., et al., Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, 2015. 44: p. 182-197.
    12. Imae, T. and Torii, H., In situ investigation of molecular adsorption on Au surface by surface-enhanced infrared absorption spectroscopy. Journal of Physical Chemistry B, 2000. 104(39): p. 9218-9224.
    13. Jung, Y., Jeong, J.Y., and Chung, B.H., Recent advances in immobilization methods of antibodies on solid supports. Analyst, 2008. 133(6): p. 697-701.
    14. Xiao, S.J., Brunner, S., and Wieland, M., Reactions of surface amines with heterobifunctional cross-linkers bearing both succinimidyl ester and maleimide for grafting biomolecules. Journal of Physical Chemistry B, 2004. 108(42): p. 16508-16517.
    15. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1169.
    16. Goutev, N. and Futamata, M., Attenuated total reflection surface-enhanced infrared absorption spectroscopy of carboxyl terminated self-assembled monolayers on gold. Applied Spectroscopy, 2003. 57(5): p. 506-513.
    17. Stettner, J., et al., A Study on the Formation and Thermal Stability of 11-MUA SAMs on Au(111)/Mica and on Polycrystalline Gold Foils. Langmuir, 2009. 25(3): p. 1427-1433.
    18. Methivier, C., Beccard, B., and Pradier, C.M., In situ analysis of a mercaptoundecanoic acid layer on gold in liquid phase, by PM-IRAS. Evidence for chemical changes with the solvent. Langmuir, 2003. 19(21): p. 8807-8812.
    19. Bain, C.D. and Whitesides, G.M., Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science, 1988. 240(4848): p. 62-63.
    20. Miyake, H., Ye, S., and Osawa, M., Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochemistry Communications, 2002. 4(12): p. 973-977.
    21. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in surface science, 2000. 65(5): p. 151-257.
    22. Bhattacharya, E., et al., Studies on varying n-alkanethiol chain lengths on a gold coated surface and their effect on antibody-antigen binding efficiency. RSC Advances, 2015. 5(98): p. 80480-80487.
    23. Liu, Y.F. and Lee, Y.L., Adsorption characteristics of OH-terminated alkanethiol and arenethiol on Au(111) surfaces. Nanoscale, 2012. 4(6): p. 2093-2100.
    24. Yan, L., et al., Formation and reaction of interchain carboxylic anhydride groups on self-assembled monolayers on gold. Langmuir, 1997. 13(25): p. 6704-6712.
    25. Vericat, C., et al., Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews, 2010. 39(5): p. 1805-1834.
    26. Chang, M.C. and Douglas, W.H., Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. Journal of Materials Science-Materials in Medicine, 2007. 18(10): p. 2045-2051.
    27. Hermanson, G.T., Bioconjugate techniques. 2013: Academic press.
    28. Usha, R., Sreeram, K.J., and Rajaram, A., Stabilization of collagen with EDC/NHS in the presence of l-lysine: A comprehensive study. Colloids and Surfaces B: Biointerfaces, 2012. 90: p. 83-90.
    29. Mojarradi, H., Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation. 2010.
    30. Hoare, D.G. and Koshland, D.E., A method for the quantitative modification and estimation of carboxylic acid groups in proteins. Journal of Biological Chemistry, 1967. 242(10): p. 2447-2453.
    31. Yan, Q., et al., EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester. RSC Advances, 2015. 5(86): p. 69939-69947.
    32. McDonagh, B.H., Optimalised Carbodiimide Chemistry for RGD-coupled Alginate. 2012, 2012.
    33. Voicu, R., et al., Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces: patterning and immobilization of DNA. Langmuir, 2004. 20(26): p. 11713-11720.
    34. Frey, B.L. and Corn, R.M., Covalent attachment and derivatization of poly(L-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy. Analytical Chemistry, 1996. 68(18): p. 3187-3193.
    35. Booth, M.A., et al., In-Depth Electrochemical Investigation of Surface Attachment Chemistry via Carbodiimide Coupling. Langmuir, 2015. 31(29): p. 8033-8041.
    36. Jiang, X.U., Ataka, K., and Heberle, J., Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an an electrode: In situ observation by surface-enhanced infrared absorption spectroscopy. Journal of Physical Chemistry C, 2008. 112(3): p. 813-819.
    37. Xu, C., et al., Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst, 2001. 126(1): p. 62-65.
    38. Pavia, D., et al., Introduction to spectroscopy. 2008: Cengage Learning.
    39. Mudunkotuwa, I.A., Al Minshid, A., and Grassian, V.H., ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst, 2014. 139(5): p. 870-881.
    40. Hartstein, A., Kirtley, J.R., and Tsang, J.C., Enhancement of the Infrared-Absorption from Molecular Monolayers with Thin Metal Overlayers. Physical Review Letters, 1980. 45(3): p. 201-204.
    41. Friedrich, M.G., et al., Activity of membrane proteins immobilized on surfaces as a function of packing density. Journal of Physical Chemistry B, 2008. 112(10): p. 3193-3201.
    42. Osawa, M., Surface-enhanced infrared absorption. Near-Field Optics and Surface Plasmon Polaritons, 2001. 81: p. 163-187.
    43. Schatz, G.C. and Van Duyne, R.P., Electromagnetic mechanism of surface‐enhanced spectroscopy. Handbook of Vibrational Spectroscopy, 2002.
    44. DeWitte, R., Surface Enhanced Infra-Red Absorption (SEIRA) Spectroscopy.
    45. Wang, L.X. and Jiang, X.E., Bioanalytical applications of surface-enhanced infrared absorption spectroscopy. Chinese Journal of Analytical Chemistry, 2012. 40(7): p. 975-981.
    46. Kriegel, S., et al., Biomimetic Environment to Study E-coli Complex I through Surface-Enhanced IR Absorption Spectroscopy. Biochemistry, 2014. 53(40): p. 6340-6347.
    47. Jensen, T.R., et al., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Applied Spectroscopy, 2000. 54(3): p. 371-377.
    48. Ataka, K. and Heberle, J., Biochemical applications of surface-enhanced infrared absorption spectroscopy. Analytical and Bioanalytical Chemistry, 2007. 388(1): p. 47-54.
    49. Wandlowski, T., et al., Surface enhanced infrared spectroscopy—Au (1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochimica Acta, 2004. 49(8): p. 1233-1247.
    50. Delgado, J.M., et al., Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 2008. 617(2): p. 130-140.
    51. Dauksher, W.J., et al., A new operating regime for electroplating the gold absorber on x-ray masks. Microelectronic Engineering, 1994. 23(1): p. 235-238.
    52. Osaka, T., et al., Electrodeposition of Soft Gold from a Thiosulfate‐Sulfite Bath for Electronics Applications. Journal of the Electrochemical Society, 1997. 144(10): p. 3462-3469.
    53. Kato, M., Yazawa, Y., and Okinaka, Y. Electroless gold plating bath using ascorbic acid as reducing agent–recent improvements. in Proceedings of the AESF Annual Technical Conference. AESF, Orlando, Florida. 1995.
    54. Warren, S., et al., A structure study of the electroless deposition of Au on Si(111): H. Surface Science, 2002. 496(3): p. 287-298.
    55. Faucheux, A., et al., Well-defined carboxyl-terminated alkyl monolayers grafted onto H-Si (111): packing density from a combined AFM and quantitative IR study. Langmuir, 2006. 22(1): p. 153-162.
    56. Hoogvliet, J., et al., Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self-assembly: a study in phosphate buffer pH 7.4. Analytical Chemistry, 2000. 72(9): p. 2016-2021.
    57. Sun, S.G., et al., Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy. Journal of Physical Chemistry B, 1999. 103(13): p. 2460-2466.
    58. Darwish, N., et al., Reversible potential-induced structural changes of alkanethiol monolayers on gold surfaces. Electrochemistry Communications, 2011. 13(5): p. 387-390.
    59. Chen, L.C., et al., Adsorption and oxidation of glycine on Au electrode: an in situ surface-enhanced infrared study. Electrochemistry Communications, 2013. 34: p. 56-59.
    60. Ataka, K. and Heberle, J., Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. Journal of the American Chemical Society, 2004. 126(30): p. 9445-9457.
    61. Kriegel, S., et al., Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy. Biochemistry, 2014. 53(40): p. 6340-6347.
    62. Olsztynska-Janus, S. and Komorowska, M., Conformational changes of l-phenylalanine induced by near infrared radiation. ATR-FTIR studies. Structural Chemistry, 2012. 23(5): p. 1399-1407.

    無法下載圖示 校內:2021-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE