簡易檢索 / 詳目顯示

研究生: 詹尚融
Zhan, Shang-Rong
論文名稱: 混合系集資料同化系統探討颱風尼柏特之影響
A Study on the Hybrid ETKF-3DVAR Data Assimilation of Typhoon Nepartak
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 52
中文關鍵詞: Hybrid3DVAR4DVAR卡爾曼濾波器WRF
外文關鍵詞: Hybrid, 3DVAR, 4DVAR, Kalman filter, WRF
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來混合資料同化(Hybrid)方法已成為天氣資料同化熱門研究,目前同化研究分為4大類,分別為3DVAR、4DVAR、卡爾曼濾波器、Hybrid,本研究選用3DVAR與Hybrid兩種方法進行研究。研究選取”尼伯特”颱風登錄過程為實驗個案,在WRF模式基礎上,針對7組實驗進行72h預報。
    結果顯示探討流場相關分佈特徵,3DVAR分析增量分佈是以同化點為中心,與實際天氣形勢沒相關性,只與同化單點位置有關; Hybrid循環由於加入系集擾動場資訊,使背景誤差結構產生動態特徵,讓分析增量呈現流場相關特性。
    在模擬路徑預報效果,無循環hybrid同化為7組實驗中誤差增長最慢,且最後模擬路徑與實際較為接近。從模擬與觀測比較,使用3DVAR和Hybrid同化,對中心氣壓和最大風速的改善有限。
    另外無同化與3DVAR和無循環Hybrid三個的累積降雨量差異性並不大,3種實驗跟實際累積雨量分佈相似;但在雨量累積分佈6小時循環同化是Hybrid比3DVAR好,並且顯示與實際近似東半部的高累積雨量分佈範圍。

    In recent years, the hybrid data assimilation has become a popular topic in the field of weather data assimilation. Nowadays there are four main techniques of as-similation: three-dimensional variational data assimilation (3DVAR), four-dimensional variational data assimilation (4DVAR), Kalman filter and Hybrid. This research implemented 3DVAR and Hybrid on the NEPARTAK typhoon regis-tration. 72h forecast based on the WRF model was conducted for 7 groups of ex-periments.
    In the distribution of the flow-dependent, the results show that the incremen-tal distribution of the 3DVAR analysis is centered on the assimilation point, which is not related to the weather but the assimilation of the single point position; The cycle Hybrid shows the analysis of incremental flow-dependent characteristics because of information Background Error structure causing dynamic characteris-tics.
    In the simulated path prediction effect, the errors growth of non-cycle Hybrid assimilation is the slowest in 7 experimental, and Its final simulated path is closer to the actual result. In the comparing of simulation and observation, improvements of pressure and maximum wind speed are limited by using 3DVAR and Hybrid as-similation.
    In addition, there is no difference in the cumulative rainfall between 3DVAR and non-cycle Hybrid. Three experiments are similar to the actual cumulative rainfall distribution. However, in the 6 hours cumulative rainfall, the hybrid is better than 3DVAR, and shows the similar result as the high cumulative rainfall distribution range of eastern half.

    中文摘要 I Abstract II 致謝 XIII 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號說明 XXI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 3 1-3 本文架構 6 第二章 模式與同化系統 8 2-1 數據資料 8 2-2 天氣預報系統 12 2-3 控制變量隨機擾動 15 2-4 傳統3DVAR 16 2-5 Hybrid同化方法 17 2-6 ETKF系集擾動更新 20 第三章 研究方法 24 3-1 硬體設備介紹 24 3-2 真實個案介紹 27 3-3 實驗設定 31 第四章 實驗結果 35 4-1 混合協方差流場相關分佈特徵 35 4-2 颱風路徑預報效果 38 4-3 颱風中心氣壓預報效果 40 4-4 颱風累積雨量預報 41 4-5 颱風中心最大風速預報 47 第五章 結論與未來展望 48 5-1 結論 48 5-2 未來展望 49 參考文獻 50

    [1] Liu, H. and X. Zou, 2003: Improvements to GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108 (D17), 4548, doi: 10.1029/2002JD003160.
    [2] Ware, R., M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, 1996: GPS soundings of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc.77, 19-40
    [3] Huang,C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe,2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Weather and Forecasting.20, 931–953.
    [4] Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing the impact of simulated COSMIC GPS Radio Occultation Data on Weather Analysis over the Antarctic: A Case Study. Mon. Wea. Rev. 134, 3283-3296.
    [5] 孫建華,齊琳琳,朱江,趙思雄,2007:三維變分系統在我國夏季降雨預測中的應用試驗.中國氣候與環境研究.12(3),413-425.
    [6] Kalnay E,S-C. Yang.2010:Accelerating the spin-up of Ensemble Kalman Filter.Q.J.R.Meteorl.Soc.136,1644-1651.
    [7] BJ Jung ,2012:Effect of targeted dropsonde observations and best track data on the track forecasts of Typhoon Sinlaku (2008) using an ensemble Kalman filter.Tellus.64,1-18.
    [8] Hamill, Thomas M., Chris Snyder, 2000: A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme. Mon. Wea. Rev.128, 2905–2919.
    [9] Wang, X., D. Barker, C. Snyder, T. M. Hamill, 2008a: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. Rev.136, 5116-5131.
    [10] Wang,X., D. Barker, C. Snyder, T. M. Hamill, 2008b: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. Mon. Wea. Rev.136, 5132-5147.
    [11] Wang,X.2011:Application of the WRF hybrid ETKF-3DVAR Data Assimilation System for Hurricane Track Forecasts . Mon.Wea. Rev.26,868-884
    [12] Craig S. Schwartz, Zhiquan Liu, Xiang-Yu Huang, and Ying-Hwa Kuo, Chin-Tzu Fong , 2013:Comparing Limited-area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation. Monthly Weather Review.141 (12),4350-4372.
    [13] William C. Skamarock, Joseph B. Klemp, Jimy Dudhia, David O. Gill, Dale M. Barker, Michael G. Duda, Xiang-Yu Huang ,Wei Wang ,Jordan G. Powers ,2008:A description of the Advanced Research WRF version 3. NCAR Technical Note.NCAR/TN-475+STR,113pp
    [14] 閔錦忠,畢坤,陳耀登,王世璋,2013:基于物理約束擾動的EnSRF雷達資料同化. 大氣科學學报.36(2),129-138.
    [15] Fuqing Zhang, Yonghui Weng, Jason A. Sippel, Zhiyong Meng, Craig H. Bishop. 2009:Cloud-resolving Hurricane Initialization and Prediction Through Assimilation of Doppler Radar Observations with An Ensemble Kalman Filter. Monthly Weather Review.137(7),2105-2125.
    [16] Aaron Johnson, Xuguang Wang, Ming Xue, Fanyou Kong, Gang Zhao, Yunheng Wang, Kevin W. Thomas,Keith A. Brewster , Jidong Gao . 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation . Mon. Wea. Rev. 142 (3),1053–1073.
    [17] Wang X, 2010: Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework.Mon Wea Rev.138,2990-2995.
    [18] Mozheng Wei, Zoltan Toth, Richard Wobus, Yuejian Zhu, Craig H. Bishop, Xuguang Wang,2006: Ensemble Transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP.Tellus.58A,28-44.
    [19] 田偉紅,莊世宇,2007:適應性觀測與集合變換卡爾曼濾波方法介紹.熱帶氣象學報.23(2),201-204.
    [20] 黃江平,劉健文,董佩明,張文軍,2014:黃紅艷,基于混合集合同化方案的颱風“海鷗”的數值模擬研究. 熱帶氣象學報.30(6),1113-1118.
    [21] 劉曉燕,楊學聯,邢建勇,2016:WRF Hybrid方法同化HY-2A散射計風資料在颱風“菲特”預報中的應用.海洋預報.33(1),1-10.

    無法下載圖示 校內:2022-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE