| 研究生: |
傅冠穎 Fu, Guan-Ying |
|---|---|
| 論文名稱: |
環碳酸酯類對氟化乙烯基高分子/離子液體/鋰鹽之鋰離子電池類固態電解質性質與性能之影響 The Effect of Cyclic Carbonates on the Properties and Performance of Fluorinated Vinyl Polymer/Ionic Liquid/Lithium Salt Quasi-Solid Electrolyte of Li-ion Batteries |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 鋰離子電解質 、固態電解質 、碳酸乙烯酯 、碳酸丙烯酯 、循環充放電效率 |
| 外文關鍵詞: | Li-ion battery, solid electrolyte, ethylene carbonate, propylene carbonate, cycling efficiency |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鋰離子電池的液態電解質本質上的高揮發性造成的安全問題,類固態電解質因其低揮發性和耐燃性而受到關注,P(VdF-HFP)和離子液體的是其中最簡單的系統之一,離子液體提供相對較高的導離子度,而P(VdF-HFP)高分子則保持足夠的機械強度。為了穩定的固體電解質介面(SEI)和良好的長效充放電效能,商用鋰離子電池使用某些特定的有機溶劑,例如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)……等。在這份研究中,我們以加入碳酸乙烯酯(EC)和碳酸丙烯酯(PC)改善了一個由P(VdF-co-HFP)和特定離子液體組成的類固態電解質,增進了導離子度,使不同速率的充放電效能有所進步,最重要的是,長效充放電效能有大幅度的改善,我們以交流阻抗分析了其半電池並以模型分析所得的圖譜,看到了更穩定的SEI。除此之外,我們比較了此類固態電解質和單純的離子液體/碳酸酯類混合的電解質的安全性,發現高分子P(VdF-HFP)能有效阻止碳酸酯類在高溫溢出。
With the innately volatile nature of liquid electrolytes causing the safety concern of Li-ion batteries, solid-like electrolytes have attracted interest due to their intrinsic low volatility and flammability. The system of P(VDF- HFP) and ionic liquids is one of the simplest; while the ionic liquids inside provide relatively high ionic conductivity, the matrix, P(VDF-co-HFP), retains enough mechanical strength. In commercial liquid electrolytes, certain organic compounds are utilized in order for stable SEI (Solid Electrolyte Interface) and good cycling efficiency, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and so on. Here, we improve a solid-like electrolyte, which is composed of P(VDF-co-HFP) and certain ionic liquids, by introducing EC and PC into the system. Improvement in ionic conductivity was obtained, enhancing the performance of charge-discharge at various C rates. Most importantly, the long-term cyclic performance is significantly improved. We examined the cells with EIS analysis (Electrochemical Impedance Spectroscopy) and performed modeling on the obtained diagrams. As expected, a more stable SEI was seen. In addition, the solid-like electrolytes were also compared with ionic liquid/carbonate electrolytes in terms of safety, and it was found that the polymer effectively prevent the carbonates from escape at elevated temperature.
1. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144 (4), 1188-1194, 1997.
2. Ebert, L. B., Intercalation Compounds of Graphite. Material Science, 6, 181, 1976.
3. Juza, W., Lithium Graphit Einlagerungsverbindungen. Naturwissenschaften, 52 (20), 560, 1965.
4. Besenhard, J. O., The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon, 14, 111, 1976.
5. Nalimova, V. A.; Guérard, D.; Lelaurain, M.; Fateev, O. V., X-ray investigation of highly saturated Li-graphite intercalation compound. Carbon, 33 (2), 177, 1995.
6. Morita, M.; Ichimura, T.; Ishikawa, M.; Matsuda, Y., Effects of the organic solvent on the electrochemical lithium intercalation behavior of graphite electrode. Journal of the Electrochemical Society, 143 (2), L26-L28, 1996.
7. Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 71 (9), 1236-1242, 2010.
8. Fry, A. J., Synthetic Organic Electrochemistry. 2nd ed.; John Wiley: London, 1989.
9. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Review, 104, 4303, 2004.
10. Harris, W. S. Electrochemical Studies in Cyclic Esters. University of California, Berkeley, CA, 1958.
11. Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. Journal of The Electrochemical Society, 121, 1457, 1974.
12. Yamaura, J.; Ozaki, Y.; Morita, A.; Ohta, A., High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material. Journal of Power Sources, 43, 233, 1993.
13. Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C.-K.; Halpert, G., Advances in ambient temperature secondary lithium cells. Journal of Power Sources, 29, 579, 1990.
14. Ohzuku, T.; Iwakoshi, Y.; Sawai, K., Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 140, 2490, 1993.
15. Guyomard, D.; Tarascon, J. M., Rechargeable Li1 + xMn2O4 / Carbon Cells with a New Electrolyte Composition: Potentiostatic Studies and Application to Practical Cells Journal of The Electrochemical Society, 140, 3071, 1993.
16. (a) EinEli, Y.; Thomas, S. R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A., Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries. Journal of the Electrochemical Society, 143 (12), L273-L277, 1996; (b) EinEli, Y.; McDevitt, S. F.; Aurbach, D.; Markovsky, B.; Schechter, A., Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes. Journal of the Electrochemical Society, 144 (7), L180-L184, 1997; (c) Aurbach, D.; Zaban, A.; Schechter, A.; Eineli, Y.; Zinigrad, E.; Markovsky, B., The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable li batteries .1. li metal anodes. Journal of the Electrochemical Society, 142 (9), 2873-2882, 1995.
17. Tarascon, D. G. a. J. M., Li Metal‐Free Rechargeable LiMn2O4 / Carbon Cells: Their Understanding and Optimization Journal of The Electrochemical Society, 139, 937, 1992.
18. Walden, P., Bull. Acad. Sci. St. Petersburg, 38, 1914.
19. Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A., J. Am. Chem. Soc., 97, 1975.
20. Wilkes, J. S.; Zaworotko, M. J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications (13), 965-967, 1992.
21. Galiński, M.; Lewandowski, A.; Stępniak, I., Ionic liquids as electrolytes. Electrochimica Acta, 51 (26), 5567-5580, 2006.
22. Wright, P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal, 7 (5), 319-327, 1975.
23. Sato, T.; Maruo, T.; Marukane, S.; Takagi, K., Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. Journal of Power Sources, 138 (1-2), 253-261, 2004.
24. Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagace, M.; Vijh, A.; Zaghib, K., Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. Journal of Power Sources, 195 (3), 845-852, 2010.
25. Wongittharom, N.; Wang, C.-H.; Wang, Y.-C.; Fey, G. T.-K.; Li, H.-Y.; Wu, T.-Y.; Lee, T.-C.; Chang, J.-K., Charge-storage performance of Li/LiFePO4 cells with additive-incorporated ionic liquid electrolytes at various temperatures. Journal of Power Sources, 260, 268-275, 2014.
26. Vogl, T.; Menne, S.; Balducci, A., Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 16 (45), 25014-25023, 2014.
27. Liao, K.-S.; Sutto, T. E.; Andreoli, E.; Ajayan, P.; McGrady, K. A.; Curran, S. A., Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources. Journal of Power Sources, 195 (3), 867-871, 2010.
28. Yang, P.; Cui, W.; Li, L.; Liu, L.; An, M., Characterization and properties of ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sciences, 14 (5), 598-606, 2012.
29. Jiang, H.; Fang, S., New composite polymer electrolytes based on room temperature ionic liquids and polyether. Polymers for Advanced Technologies, 17 (7-8), 494-499, 2006.
30. Peled, E., The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model. Journal of the Electrochemical Society, 126 (12), 2047-2051, 1979.
31. Dey, A. N., Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films, 43 (1-2), 131-171, 1977.
32. Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E., Identification of surface-films formed on lithium in propylene carbonate solutions. Journal of the Electrochemical Society, 134 (7), 1611-1620, 1987.
33. Kanamura, K.; Tomura, H.; Shiraishi, S.; Takehara, Z. I., XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. Journal of the Electrochemical Society, 142 (2), 340-347, 1995.
34. Yazami, R.; Touzain, P., A reversible graphite lithium negative electrode for electrochemical generators. Journal of Power Sources, 9 (3-4), 365-371, 1983.
35. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 54 (2), 228-231, 1995.
36. (a) Jiang, Z.; Alamgir, M.; Abraham, K. M., The electrochemical intercalation of li into graphite in li polymer electrolyte graphite cells. Journal of the Electrochemical Society, 142 (2), 333-340, 1995; (b) Abe, T.; Mizutani, Y.; Tabuchi, T.; Ikeda, K.; Asano, M.; Harada, T.; Inaba, M.; Ogumi, Z., Intercalation of lithium into natural graphite flakes and heat-treated polyimide films in ether-type solvents by chemical method. Journal of Power Sources, 68 (2), 216-220, 1997.
37. Kim, Y. O.; Park, S. M., Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments. Journal of the Electrochemical Society, 148 (3), A194-A199, 2001.
38. (a) Chung, G. C.; Kim, H. J.; Jun, S. H.; Kim, M. H., New cyclic carbonate solvent for lithium ion batteries: trans-2,3-butylene carbonate. Electrochemistry Communications, 1 (10), 493-496, 1999; (b) Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H., Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation. Journal of the Electrochemical Society, 147 (12), 4391-4398, 2000.
39. Matsuo, Y.; Kostecki, R.; McLarnon, F., Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures. Journal of the Electrochemical Society, 148 (7), A687-A692, 2001.
40. Barsoukov, E.; Macdonald, J. R., Impedance Spectroscopy Theory, Experiment, and Applications. A John Wiley & Sons, Inc., Publication: 2005.
41. Osakaa, T.; Momma, T.; Mukoyamab, D.; Narab, H., Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. Journal of Power Sources, 205, 483-486, 2012.
42. Momma, T.; Matsunaga, M.; Mukoyama, D.; Osaka, T., Ac impedance analysis of lithium ion battery under temperature control. Journal of Power Sources, 216, 304-307, 2012.
43. Gao, P.; Zhang, C.; Wen, G., Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries. Journal of Power Sources, 294, 67-74, 2015.
44. Huang, J.; Li, Z.; Liaw, B. Y.; Zhang, J., Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 309, 82-98, 2016.
45. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhoefer, H. D.; Gores, H. J., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 56 (11), 3926-3933, 2011.
46. (a) Wakai, C.; Oleinikova, A.; Ott, M.; Weingartner, H., How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. Journal of Physical Chemistry B, 109 (36), 17028-17030, 2005; (b) Singh, T.; Kumar, A., Static Dielectric Constant of Room Temperature Ionic Liquids: Internal Pressure and Cohesive Energy Density Approach. Journal of Physical Chemistry B, 112 (41), 12968-12972, 2008.
47. Ma, W.; Yuan, H.; Wang, X., The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride) Copolymers. Membranes, 4 (2), 243-256, 2014.
48. Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B., Encyclopedia of Electrochemical Power Sources 2009.
49. Chen, C.-F.; Mukherjee, P. P., Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Physical Chemistry Chemical Physics, 17 (15), 9812-9827, 2015.