| 研究生: |
楊喬然 Yang, Chiao-Jan |
|---|---|
| 論文名稱: |
分段空氣燃燒與超焓燃燒之技術發展 Technical Developments on Air-Staging Combustion and Excess-Enthalpy Combustion |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 超焓燃燒 、分段空氣燃燒 |
| 外文關鍵詞: | OFA, excess enthalpy |
| 相關次數: | 點閱:210 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為兩部份,第一部份探討分段空氣燃燒法對工業燃燒衍生氮氧化物排放之抑制效果;第二部份為超焓反置擴散火焰燃燒器之設計與實作。
在分段空氣燃燒的實驗中,針對6號重油燃油流率20L/hr及柴油在燃油流率為16和20 L/h兩種負載條件下,探討不同分段空氣供給位置和供給量對NOX排放量之影響。實驗結果顯示,分段空氣的供給位置須位於火焰下游的高溫區才具有NOX減量效果,若供給位置太接近主燃燒區則無NOX減量效果;而且供給位置愈下游,NOX減量效果愈佳,但若離主燃燒區太遠時,在較高之分段空氣供給率下,會造成CO排放量之暴增。在適當供給位置下,隨著分段空氣供給率之增加,其NOX排放量呈遞減之趨勢;但其供給率須適當控制,若太高時則可能使CO排放量暴增。另當負載改變時,火焰的型態也會跟著改變,此時須依當時的操作條件適當調整分段空氣的供給位置和供給率,如此才可得較佳之NOX減量效果。
超焓燃燒研究主要是利用熱交換原理,將火焰下游高溫產物的熱量傳遞給上游未燃混合氣,使未燃氣在通過火焰之前先經預熱,以達到超焓的目的。本研究提出一種兼具新穎性與原創性的新型超焓反置擴散火焰概念,可從燃燒器設計本身著手,以達到超焓燃燒目的。研究中設計一個三環同軸噴流燃燒器(中心圓管與最外環管供給空氣,第二環管供給燃料),為了達到蓄熱效果,中心圓管材料選用易於吸熱蓄熱之陶瓷材料與不鏽鋼管做比較,且其內環出口與第二環和最外環高度差(L)為可調整。實驗結果顯示,內環空氣流速與第二環管燃料流速皆會影響內層擴散火焰結構以及中心圓管管壁溫度。中心圓管使用不鏽鋼管熱傳能力比陶瓷管好,但對於內環空氣的預熱能力卻不如陶瓷管。內環出口與第二環和最外環高度差(L)會影響內環空氣出口溫度,但對火焰溫度和火焰結構影響不大。
This study involves two parts. In the first parts, we investigated the reduction of NOX emissions by over-fired air technique; next, we designed and tested an excess enthalpy inverse diffusion flame burner.
Over-fired air (OFA) is recognized as an important technique to lower NOX emissions, and has been extensively used in commercial furnaces. In this study, we use a refractory boiler-simulator furnace to investigate the influence of the arrangement of OFA ports and OFA ratio on NOX emissions, at a heavy oil supply rate 20 L/hr and two different diesel supply rates(20 L/hr and 16 L/hr). The results show that when the arrangement of OFA ports is at the downstream of the flame, the NOX emission is reduced. A larger reduction of NOX emission is achieved as the OFA ports are arranged further downstream; however, a higher OFA ratio (greater than 25%) may lead to the problem of increased CO emission when the arrangement of OFA ports is farther downstream away from the flame. Additionally, when the load is changed, a satisfactory reduction of NOX emission can be obtained by adjusting the arrangement of OFA ports and OFA ratio appropriately.
We designed an excess enthalpy inverse diffusion flame burner to study experimentally the combustion characteristic of an excess-enthalpy inverse diffusion flame stabilized in a coaxial triple-jet burner. The jets which flows through the axisymmetric burner consist of an inner air jet, an annular fuel jet and an outer air jet. The inner tube of the burner is made of ceramic or stainless material and its exit is higher than those two annular tubes, and is called the protrusion length (L). An excess enthalpy diffusion flame is achieved by transferring heat from the flame base and products downstream of the flame, through the inner tube, and to the upstream fresh air and fuel. It is found the temperature of the inner tube increase with increasing L. The preheating ability of the ceramic inner tube is better than stainless material.
第一部份 分段空氣燃燒之技術發展
1. Glassman, I., Combustion, Third Edition, Academic Press, New York, pp.210-227, 1996.
2. Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G. M., The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, pp. 30-36, 1985.
3. Fenimore, C.P., “Formation of Nitric Oxide in Premixed Hydrocarbon Flames,” Thirteenth Symposium (International) on Combustion, The Combustion Institute, pp. 373-380, 1971.
4. Miller, J.A. and Bowman, C.T., “Mechanism and Modeling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci., Vol. 15, pp. 287-338, 1989.
5. Lyngfelt, A., Amand, L.E., Gustavsson, L., and Leckner, B., “Methods for Reducing the Emission of Nitrous Oxide from Fluidized Bed Combustion,” Energy Conversion, Vol. 37, pp. 1297-1302, 1996.
6. Lu, Y., Hippin, L., and Jahkola, A., “Control of NOX and N2O in Pressurized Fluidized-bed Combustion,” Fuel, Vol. 74, No. 3, pp. 317-322, 1995.
7. Spliethoff, H., Greul, U., Rudiger, H., and Hein, K.R.G., “Basic Effects on NOX Emissions in Air Staging and Reburning at a Bench-Scale Test Facility,” Fuel, Vol. 75, No. 5, pp. 560-564, 1996.
8. Jun, X.X., Sun, X., Hu, S., and Yu, D.X., “An Experimental Research on Boiler Combustion Performance,” Fuel Processing Technology, Vol. 68, pp. 139-151, 2000.
9. Mao, F., and Barat, R.B., “Minimization of NO During Staged Combustion of CH3NH2,” Combustion and Flame, Vol. 105, pp. 557-568, 1996.
10. Gerhold, B.W., Fenimore, C.P., Dederick, P.K., “Two-Staged Combustion of Plain and N Doped Oil,” Seventeenth Symposium (International) on Combustion, The Combustion Institute, pp. 703-713, 1978.
11. Yamagishi, K., Nozawa, M., Yoshie, T., Tokumoto, T., and Kosegawa, Y., “A Study of NOX Emission Characteristics in Two Stage Combustion,” Fifteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1157-1166, 1975.
12. Pershing, D.W., Cichanowicz, J.E., England, G.C., Heap, M.P., and Martin, G.B., “The Influence of Fuel Composition and Flame Temperature on the Formation of Thermal and Fuel NOX in Residual Oil Flames,” Seventeenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, pp. 715-726, 1979.
13. England, G.C., Heap, M.P., Pershing, D.W., Nihart, R.K., and Martin, G.B., “Mechanisms of NOX Formation and Control: Alternative and Petroleum-Derived Liquid Fuels,” Eighteenth Symposium (International) Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, pp. 163-174, 1981.
14.Giovanni, D.V., McElroy, M.W., and Kerho, S.E., EPRI/EPA Joint Symp. on Stationary Combustion NOX Control, Kansas City, Missouri, May, 1995.
第二部份 超焓燃燒之技術發展
1. Jones, H.R.N., “The Application of Combustion Principles to Gas Burner Design,” British Gas, 1989.
2. 賴耿陽譯著,瓦斯爐燃燒裝置實務,復漢出版社,民國75年。
3. Wohl, K., Kapp, N.M., and Gazley, C., “Diffusion Flames,” Third Symposium (International) on Combustion, The Combustion Institute, pp. 288, 1949.
4. Peters, N., and Williams, F.A., “Liftoff Characteristics of Turbulent Jet Diffusion Flames,” AIAA, Vol. 21, No. 3, pp. 423, 1983.
5. Karim, G.A., Wierzba, I., and Hanna, M., “The Blowout Limit of a Jet Diffusion Flame in a Coflowing Stream of Lean Gaseous Fuel-Air Mixtures,” Combust. Flame, Vol. 57, pp. 283, 1984.
6. Williams, F.A., Combustion Theory, Second Edition, Benjamin/Cummings, 1985.
7. Gaydon, A.G., and Wolfhard, H.G., Flames, their structure, radiation, and temperature, Fourth Edition, Chapman and Hall, London, 1979.
8. Beer, J.M., and Chigier, N.A., Combustion Aerodynamics, Applied Science Publishers, London, 1974.
9. Kalghatgi, G.T., “Blow-Out Stability of Gaseous Jet Diffusion Flames. Part1: In Still Air,” Combust. Sci. Tech., Vol. 26, pp. 233, 1981.
10. Kalghatgi, G.T., “Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air,” Combust. Sci. Tech., Vol. 41, pp. 17, 1984.
11. Kanury, A.M., Introduction to Combustion Phenomena, Gordon and Breach, New York, 1975.
12. Wu, K.T., and Essenhigh, R.H., “Mapping and Structure of Inverse Diffusion Flames of Methane,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 1925, 1984.
13. Shu, Z., Aggarwal, S.K., Katta, V.R., and Puri, I.K., “A Numerical Investigation of the Flame Structure of an Unsteady Inverse Partially Premixed Flame,” Combust. Flame, Vol. 111, pp. 296, 1999.
14. Partridge, W.P., Reisel, J.R., and Laurendeau, N.M., “Laser-Saturated Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame,” Combust. Flame, Vol. 116, pp. 282, 1999.
15. Weinberg, F.J., “Combustion Temperatures: The Future?” Nature, Vol. 233, pp. 239, 1971.
16. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combust. Sci. Tech., Vol. 20, pp. 73, 1979.
17. Deshaies, B., and Joulin, G., “Asumptotic Study of an Excess-Enthalpy Flame,” Combust. Sci. Tech., Vol. 22, pp. 281, 1980.
18. Takeno, T., Sato, K., and Hase, K., “A Theoretical Study on an Excess Enthalpy Flame,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 465, 1982.
19. Buckmaster, J., and Takeno, T., “Blow-Off and Flashback of an Excess Enthalpy Flame,” Combust. Sci. Tech., Vol. 25, pp. 153, 1981.
20. Takeno, T., and Hase, K., “Effects of Solid Length and Heat Loss on an Excess Enthalpy Flame,” Combust. Sci. Tech., Vol. 31, pp. 207, 1981.
21. Hou, S.S., and Lin, T.H., “A Theory on Excess Enthalpy Spray Flame,” Atomization and Sprays, Vol. 9, pp. 355-369, 1999.
22. Lloyd, S.A., and Weinberg, F.J., “Strained Mixed-Cluster Model for Glass Structure,” Nature, Vol. 251, pp. 47, 1974.
23.Lloyd, S.A., and Weinberg, F.J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367, 1975.
24.Lloyd, S.A., and Weinberg, F.J., “A Recirculating Fluidized Bed Combustor for Extended Flow Ranges,” Combust. Flame, Vol. 27, pp. 391, 1976.
25. Katani, Y., and Takeno, T., “An Experimental Study on Stasility and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1503, 1983.
26. Tamir, A., “A Swirling-Flame Combustor for Lean Mixtures,” Combust. Sci. Tech., Vol. 90, pp. 193, 1993.
27. Katani, Y., Behbahani, H.F., and Takeno, T., “An Excess Enthalpy Flame Combustor for Extended Flow Ranges,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 2025, 1984.