| 研究生: |
林孟弦 Lin, Meng-Hsien |
|---|---|
| 論文名稱: |
模仿人類爬梯步態之創新八連桿足型機構最佳設計與多足爬梯機器人設計之研究 Optimal Design of an Innovative Eight-Bar Legged Walking Mechanism that Mimics Human Foot Trajectory when Climbing Stairs and the Development of a Multi-Legged Stair Climbing Robot |
| 指導教授: |
劉至行
Liu, Chih-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 爬梯機 、仿生機器人 、最佳化演算法 、機構設計 、仿生爬梯軌跡 |
| 外文關鍵詞: | Stair climbing machine, legged robot, linkage mechanism, mechanism design, optimization algorithm |
| 相關次數: | 點閱:158 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一組創新的足型爬梯機構之最佳比例,相較於現有爬梯機器多以滾輪型、履帶型或多足獨立控制型機器進行爬梯,有爬梯緩慢、質心起伏大等問題,本研究之足型爬梯機構以Jansen機構為原型,該機構僅需單一動力輸入源即可驅動機構運行,跨距大且質心穩定幾乎無晃動,為穩定快速且節能之足型機構。但Jansen機構僅能行走於平地,該軌跡無法進行爬梯,故本研究之足型爬梯機構以模仿人類爬梯之步態軌跡為目標,利用Freeman chain code取得人類爬梯步態軌跡之關鍵點,並建立機構軌跡點自動對應人類爬梯步態軌跡關鍵點之目標函數,使之逼近人類爬梯步態軌跡,並創新最佳化演算法,適用於多變數但不能同時改變所有變數之最佳化問題,並利用此方法,獲得爬梯Jansen機構之黃金比例,並根據此爬梯機構,設計一台多足型仿生爬梯機器人,利用多體運動學模擬分析機器人模型,並加工實作實體模型進行實驗,最終將最佳化結果、模擬結果、實驗結果進行比較驗證,三者驗證結果符合。本研究之足型爬梯機構具備跨越階梯之能力,可拓展於偵查、救災與軍事方面之應用,將來更可將此具備爬梯功能之機構應用於行動輔具的設計,讓行動不便者與年長者可利用此創新之爬梯輔具,完成上下樓梯的行動。本研究之成果將可對行動不便者提供極大的助益,對目前高齡化的國家社會影響層面極大,深具研發意義與市場經濟價值。
This study presents an innovative linkage mechanism and the design of a multi-legged stair-climbing robot. As the traditional continuous track type, star wheel type, and individually controlled multi-legged type stair-climbing machines are either moved slowly or with large oscillation at the centroid during operation. This study presents a multi-legged stair-climbing robot with the capability to steadily climb stairs with consistent human foot trajectory. The leg design is based on the eight-bar Jansen mechanism but a new set of leg configuration is numerically identified based on the proposed optimal design method with the aim to mimic the human foot trajectory when climbing stairs. The kinematic analysis of the leg mechanism based on loop closure equation has been derived in order to identify the leg trajectories for various designs. The targeted foot trajectory is experimentally measured. The weighted sum and sequential quadratic programming methods are used to solve the multi-objective function in the optimal design process. The proposed design is an eight-leg robot; its dynamic performance and trajectories of the multibody motion when climbing stairs have been numerically verified by using the commercial CAE package, RecurDyn. The prototype of the biomimetic robot has been developed to proof the concept design. The experimental results show the multi-legged robot can step up and down stairs with steady human foot trajectory. The outcomes of this study provide numerical methods to analyze the multibody dynamics of the linkage mechanisms as well as to develop an innovative multi-legged walking robot for stair-climbing. The development is expected to be further used for various applications such as rescue robots, information collection/detection, and assistive devices.
[1] 行政院經濟建設委員會,"中華民國2012 年至2060 年人口推計",2012年8月。
[2] 國家發展委員會人力發展處,"中華民國人口推計(103至150年)",2014年8月18日。
[3] 經建會人力規劃處,"人口老化專輯-全球人口老化之現況與趨勢",台灣經濟論衡Taiwan Economic Forum,pp. 27-34,2013年10月。
[4] 張語羚,"259萬老人、身障者困老公寓 楊玉欣:爬梯機助出門",http://www. ettoday.net/news/20150417/494252.htm#ixzz3XuVlqF2O,2015年4月17日。
[5] 徐業良,"應用專利分析進行創新研發布局-以爬梯機技術為例",2013。
[6] L. A. Rygg, "Mechanical horse," U.S. Patents 491 927, 14 Feb.1893.
[7] M. E. Rosheim, Robot evolution: the development of anthrobotics, John Wiley & Sons, 1994.
[8] A. D. Perkins, "Control of Dynamic Maneuvers for Bipedal Robots," Ph.D. dissertation, Department of mechanical engineering, Stanford University, 2010.
[9] M. Russell, "Odex I: The first functionoid," Robotics Age, vol. 5, pp. 12-18, 1983.
[10] M. H. Raibert, M. Chepponis, and H. B. Brown Jr, "Running on four legs as though they were one," IEEE Journal of Robotics and Automation, vol. 2, pp. 70-82, 1986.
[11] 吳宗軒,"王湔仿生車輪之改進設計",國立成功大學機械工程學系碩士論文,2012。
[12] 林寬禮,"王湔木牛流馬之改進設計",國立成功大學機械工程學系碩士論文,1995。
[13] 陳柏宏,"四連桿與六連桿型木車馬之機構設計",國立成功大學機械工程學系碩士論文,1998。
[14] 黃凱,"最佳八連桿型機器馬之研究",國立成功大學機械工程學系碩士論文,1997。
[15] 沈煥文,"八連桿型機器馬之機構設計",國立成功大學機械工程學系碩士論文,1999。
[16] 洪芝青,"混合八連桿型步行機器馬之機構設計",國立成功大學機械工程學系碩士論文,2002。
[17] 江高竹,"十連桿型魯班木車馬之復原設計",國立成功大學機械工程學系碩士論文,2005。
[18] D. J. Todd, Walking machines: an introduction to legged robots, Springer Science & Business Media, 2013.
[19] P. G. D. Santos, J. A. Galvez, J. Estremera, and E. Garcia, "SIL04: a true walking robot for the comparative study of walking machine techniques," IEEE Robotics & Automation Magazine, vol. 10, pp. 23-32, 2003.
[20] J. Estremera, J. A. Cobano, and P. G. de Santos, "Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: An application to humanitarian demining," Robotics and Autonomous Systems, vol. 58, pp. 700-711, 2010.
[21] T. Jansen, "Theo Jansen's Strandbeest," http://www.strandbeest.com.
[22] W. B. Shieh, L.-W. Tsai, and S. Azarm, "Design and optimization of a one‐degree‐of‐freedom six‐bar leg mechanism for a walking machine," Journal of Robotic systems, vol. 14, pp. 871-880, 1997.
[23] W.-B. Shieh, L.-W. Tsai, S. Azarm, and A. L. Tits, "A new class of six-bar mechanisms with symmetrical coupler curves," Journal of Mechanical Design, vol. 120, pp. 150-153, 1998.
[24] J. C. Klann, "Walking device," U.S. Patent 6 260 862, 17 Jul. 2001.
[25] J. C. Klann, "Walking device," U.S. Patent 6 364 040, 2 Apr. 2002.
[26] J. C. Klann, "Walking device," U.S. Patent 6 478 314, 12 Nov. 2002.
[27] F. Moldovan, V. Dolga, O. Ciontos, and C. Pop, "CAD design and analytical model of a twelve bar walking mechanism," University Politehnica of Bucharest Scientific Bulletin, Series D: Mechanical Engineering, vol. 73, pp. 35-48, 2011.
[28] F. Moldovan, V. Dolga, and C. Pop, Kinetostatic analysis of an articulated walking mechanism, Springer Science & Business Media, 2012.
[29] S. Nansai, M. R. Elara, and M. Iwase, "Dynamic analysis and modeling of Jansen mechanism," Procedia Engineering, vol. 64, pp. 1562-1571, 2013.
[30] S. Nansai, M. Iwase, and M. R. Elara, "Energy based position control of Jansen walking robot," 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1241-1246, 2013.
[31] W. Blajer, "A projection method approach to constrained dynamic analysis," Journal of applied Mechanics, vol. 59, pp. 643-649, 1992.
[32] A. Aan and M. Heinloo, "Analysis and Synthesis of the Walking Linkage of Theo Jansen with a Flywheel," Agronomy Research, vol. 12, pp. 657-662, 2014.
[33] D. Giesbrecht, "Design and optimization of a one-degree-of-freedom eight-bar leg mechanism for a walking machine," Ph.D. dissertation, Department of Mechanical and Manufacturing Engineering, University of Manitoba, 2010.
[34] D. Giesbrecht, C. Q. Wu, and N. Sepehri, "Design and optimization of an eight-bar legged walking mechanism imitating a kinetic sculpture, "wind beast"," Transactions of the Canadian Society for Mechanical Engineering, vol. 36, pp. 343-355, 2012.
[35] K. Komoda and H. Wagatsuma, "A study of availability and extensibility of Theo Jansen mechanism toward climbing over bumps," 21st Annual Conference of the Japanese Neural Network Society, pp. 3-28, 2011.
[36] K. Komoda and H. Wagatsuma, "A proposal of the extended mechanism for Theo Jansen linkage to modify the walking elliptic orbit and a study of cyclic base function," 7th Annual Dynamic Walking Conference (DWC’12), 2012.
[37] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, "Exploration of adaptive gait patterns with a reconfigurable linkage mechanism," 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4661-4668, 2013.
[38] S. Nansai, N. Rojas, M. R. Elara, R. Sosa, and M. Iwase, "On a Jansen leg with multiple gait patterns for reconfigurable walking platforms," Advances in Mechanical Engineering, vol. 7, p. 1687814015573824, 2015.
[39] A. J. Ingram, "A new type of mechanical walking machine," Ph.D. dissertation, Department of mechanical engineering, University of Johannesburg, 2006.
[40] 袁嘉廷,"八連桿仿生步行機構設計",國立清華大學動力機械工程學系碩士論文,2009。
[41] 劉庭亞,"仿生獸結構之水陸兩用載具之研製",國立成功大學工程科學系碩士論文,2015。
[42] J. G. Tauber, "Stair-truck," U.S. Patent 255 693, 1882.
[43] C. H. Kahlmorgan and R. M. Harris, "Stair climber for cleaning machine," U.S. Patent 3 411 599, 1968.
[44] M. J. Lawn and T. Ishimatsu, "Modeling of a stair-climbing wheelchair mechanism with high single-step capability," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, pp. 323-332, 2003.
[45] M. M. Dalvand and M. M. Moghadam, "Stair climber smart mobile robot (MSRox)," Autonomous Robots, vol. 20, pp. 3-14, 2006.
[46] K. J. Waldron, M. Eich, F. Grimminger, and F. Kirchner, "Adaptive compliance control of a multi-legged stair-climbing robot based on proprioceptive data," An International Journal Industrial Robot, vol. 36, pp. 331-339, 2009.
[47] 林政達,"輔助重物搬運爬梯機構之系統設計與工程分析",國立交通大學工學院精密與自動化工程學程碩士論文,2010。
[48] SANO, "SANO Transportgeraete GmbH," http://www.sano.at/en.
[49] M. J. Lawn, T. Sakai, M. Kuroiwa, and T. Ishimatsu, "Development and practical application of a stairclimbing wheelchair in Nagasaki," Journal of HWRS-ERC, vol. 2, pp. 33-39, 2001.
[50] 黃錦標,"電動爬梯車裝置",中華民國專利公告號 I417212,2013。
[51] Scalevo, "Scalevo Wheelchair," https://www.facebook.com/scalevo/.
[52] "履帶式機器人之上下樓梯實驗",國立臺灣師範大學電機工程學系計算智慧與機器人實驗室,http://isd.ie.ntnu.edu.tw/isdwebsite/research-5.html.
[53] N. Li, S. Ma, N. Li, M. Wang, and Y. Wang, "An online stair-climbing control method for a transformable tracked robot," 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 923-929, 2012.
[54] G. C. Haynes and A. A. Rizzi, "Gaits and gait transitions for legged robots," 2006 IEEE International Conference on Robotics and Automation, pp. 1117-1122, 2006.
[55] G. Krummel, K. Kaipa, T. Brewer, and S. K. Gupta, "A Quadruped Robot with On-Boarding Sensing and Parameterized Gait for Stair Climbing," https://www.youtube. com/watch?v=t3AV6kCelzc.
[56] A. Ghassaei, "The Design and Optimization of a Crank-Based Leg Mechanism," Department of Physics and Astronomy, Pomona College, 2011.
[57] A. Kanarachos, D. Koulocheris, and H. Vrazopoulos, "Evolutionary algorithms with deterministic mutation operators used for the optimization of the trajectory of a four-bar mechanism," Mathematics and computers in simulation, vol. 63, pp. 483-492, 2003.
[58] Y. Y. Kim, G.-W. Jang, J. H. Park, J. S. Hyun, and S. J. Nam, "Automatic synthesis of a planar linkage mechanism with revolute joints by using spring-connected rigid block models," Transactions of the ASME Journal of Mechanical Design, vol. 129, pp. 930-940, 2007.
[59] S. J. Nam, G.-W. Jang, and Y. Y. Kim, "The spring-connected rigid block model based automatic synthesis of planar linkage mechanisms: numerical issues and remedies," Journal of Mechanical Design, vol. 134, p. 051002, 2012.
[60] W. L. Cleghorn and N. Dechev, Mechanics of machines, Oxford University Press, USA, 2005.
[61] H. Freeman, "On the encoding of arbitrary geometric configurations," IRE Transactions on Electronic Computers, vol. EC-10, pp. 260-268, 1961.
[62] 羊斌,"基於 Freeman 鏈碼的自由曲線直線逼近算法",計算機時代,第12期,pp. 57-59,2013。
[63] J. S. Arora, Introduction to Optimum Design, 3rd ed., Academic Press, 2011.
[64] R. L. Norton, Kinematics and Dynamics of Machinery, 2nd ed., McGraw-Hill, 2013.
[65] B. Wills, "“Walk Like a Man”– Kinetic Sculptures by Theo Jansen," https:// artstormer.com/2011/01/31/walk-like-a-man-kinetic-sculptures-by-theo-jansen/, 31 Jan. 2011