| 研究生: |
蕭茂修 Shiau, Mao-shiou |
|---|---|
| 論文名稱: |
以海洋微藻固定CO2並作為生質能源之研究 Bio-fixation of Carbon Dioxide and Bio-energy Production with Marine Microalgae |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 洋微藻 、質能源 、室效應 、二氧化碳 |
| 外文關鍵詞: | Bio-energy, Global warming, Carbon dioxide, Seawater microalgae |
| 相關次數: | 點閱:139 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溫室氣體造成全球暖化的問題日益嚴重,其中二氧化碳之貢獻度最大,因此針對二氧化碳排放之減量為減緩全球暖化的主要目標。本研究之目標有三:(1) 模擬吸收塔捕捉二氧化碳形成之無機碳溶液作為藻類光合作用的碳源;(2) 模擬未被吸收塔捕獲之二氧化碳氣體為藻類光合作用所需之碳源;(3) 討論各種培養條件下藻體內所含生質能源的組成。海洋微藻被認為是解決全球暖化問題的最主要角色,這是因為海洋微藻具有高光合效率。因此本研究篩選海洋微藻作為本研究主要材料。
本研究以自行篩選出來的MN41與ASN41為主要研究對象。以分子生物方法進行鑑定時,分別以16S12、CS12、CS34NS12及18S12五組引子,偵測限制片段長度。MN41僅有引子18S12可成功地測定出限制片段的長度,而經由18S12放大之序列,進行資料庫比對,可判定藻種MN41應屬Nanochlorum sp.之可能性最大。而ASN41尚無法成功鑑定。
將MN41及ASN41以管柱之光合反應器進行批次及半連續式培養,工作體積為1 L。而模擬之碳源吸收液中,以添加碳酸氫鈉為碳源;光照強度固定為 5,500 Lux,全天照光;針對不同pH值、不同起始無機碳源濃度、不同起始無機氮源及不同曝氣濃度為實驗參數,探討微藻之生長情形。
以不同pH值為操作變因之實驗中,藻種MN41於pH = 7時呈現出較佳之生長狀況;而ASN41則在pH = 8時生長情形表現較佳。藻類生長得越好,具優勢之生質能源含量也越高。
在氮源濃度不受限制之不同起始無機碳源濃度條件下,隨著所添加之碳源初始濃度越高,MN41中lipid含量越高,最大值為33%;而ASN41則是carbohydrate隨之增高,最大值為32%。在不同初始氮源濃度而碳源不受限制之實驗中,兩藻類生成的carbohydrate含量隨著氮源受限制而明顯增加,且均高於40%。由Monod equation分析可得到以下二式:
與 for MN41
與 for ASN41
由式子中可發現MN41相較於ASN41,其對於碳源之親和性亦較高,而對氮源之親和性差異不大。
以不同CO2曝氣濃度為變因之實驗,雖然10% CO2培養下,ASN41所生長的biomass最多,但15% CO2的培養條件下無法生長,較不利於直接曝以煙道氣培養。反觀MN41,能在一般煙道氣所排放之CO2濃度(10-20%)下生存。在生質能源之分析方面,carbohydrate含量以MN41在10% CO2培養下最大(36%),lipid含量則以ASN41在10% CO2培養下最大(22%)。但此組實驗之氮源濃度皆未受限制。
It is necessary to eliminate CO2 emissions for the mitigation of global warming. This study can be divided into three parts as follows: (1) performance of algal photosynthesis with dissolved inorganic carbon (DIC) simulated for CO2 absorber, (2) performance of algal photosynthesis with CO2 from the effluent of item (1), and (3) assessment of the bio-energy potentials under various culture conditions. Microalgae isolated from seawater were taken as the candidates in this study due to their higher photosynthetic efficiencies than terrestrial plants.
Two species, MN41 and ASN41, were isolated from Hsin-Ta Port in southern Taiwan and identified with the molecular biological approach. The results of identification revealed that MN41was close to Nanochlorum sp. but ASN41 was not identifiable to date via this approach.
The parameters of MN41 and ASN41 under batch or semi-continuous culture in the photo-bioreactor (work volume was 1 L) were listed as follows: initial concentrations of carbon source by adding sodium bicarbonate or bubbling CO2; initial concentrations of nitrate; pHs; constant light intensity (5,500 Lx) with no night time.
Regarding to the effects of pHs, MN41 revealed the optimum growth rate and bio-energy potential at pH 7 and ASN41 at pH8.
Regarding the effects of DIC concentrations under no limitations of nitrogen, the contents of lipid of MN41 increased as DIC concentrations increased (Max., 33%) and the contents of carbohydrate of ASN41 increased as DIC concentrations increased (Max., 32%). Regarding to the effects of DIC concentrations under limitations of nitrogen, the contents of carbohydrate of both algal species increased in N-limition condition and both increase were all above 40%. Two multiplicative Monod equations of MN41 and ASN41 were listed below, respectively:
and for MN41
and for ASN41
According to these two equations, the affinity constant of DIC of MN41 were larger than ASN41. But the affinity constants of nitrate of these two species were similar.
Regarding to the effects of CO2 concentrations with bubbling, the results revealed that ASN41 was not good for eliminating CO2 from flue gas due to its death under 15% CO2 bubbling even though its productivity was the maximum under 10% CO2 bubbling. For the case of MN41, it can grow well ranging from 10 to 20% of CO2 bubbling and is suitable for elimination of CO2 form flue gas. Regarding to the bio-energy potential, 36% of carbohydrate of MN41 and 22% of lipid of ASN41 under 10% CO2 bubbling were the maxima under no limitations of nitrogen.
1. 『美國《時代雜誌》中文解讀版』,p.74-80,2004年8月。
2. 『溫室效應氣體減量技術推廣與輔導計劃』,經濟部工業局,工業技術研究院,2001年12月31日。
3. 『溫室效應氣體減量技術推廣與輔導計劃』,經濟部工業局,工業技術研究院,2002年12月31日。
4. 『環境工程概論』,中華民國環境工程學會編印,2002年。
5. 丁澤民等,『生物學』,藝軒圖書出版社,1998年。
6. 工業技術研究院能源與資源研究所,溫室氣體統計,2004年。
7. 台灣日報,第9版,2004年11月10日。
8. 行政院主計處,國情統計通報,2005年5月10日。
9. 行政院主計處,溫室氣體減量概況,2006年6月5日。
10. 行政院環保署,台灣地區水庫浮游藻類,2003年。
11. 行政院環保署,環境保護統計名詞定義,2006年9月。
12. 行政院環境保護署空保處,2006年9月20日。
13. 行政院環境保護署空保處,2007年5月8日。
14. 吳宣霖,「利用核醣體核酸序列鑑定綠球藻之分離株」,碩士論文,國立台灣大學農業化學研究所,1999。
15. 李文哲,『以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中CO2之研究』,國立成功大學環境工程研究所碩士論文,2006年。
16. 李文峰,『以MEA溶液去除煙道氣中二氧化碳之研究』,國立成功大學環境工程研究所碩士論文,2002年。
17. 林健三,環境工程概論,2002年。
18. 邱耀興,『小球藻固碳培養條件之探討』,長庚大學化工暨材料工程研究所碩士論文,2003年。
19. 高宜廷,『新型光生化反應器之開發與其在單細胞藻類培養上之應用』,國立清華大學化學工程研究所碩士論文,2001年。http://life.nthu.edu.tw/~labtcs/fei/data/phyto/2/Chlorella.htm。
20. 康育豪,『深海掩埋液態CO2技術之最佳注入深度及液滴大小探討』,國立交通大學環境工程研究所碩士論文,2000年。
21. 張惟閔,『微藻培養於光生化反應器之系統開發』,國立清華大學化學工程研究所碩士論文,2005年。
22. 張義宏,『利用本土性小球藻固定二氧化碳之技術開發』,國立台灣大學農業化學研究所博士論文,2001年。
23. 許峻賓,『巴西能源政策』,能源報導,經濟部能源局,2006年4月。
24. 郭明朝、陳威希、魏華洲、門立中,『開拓生質能源新世紀』,科學月刊,2006年8月。
25. 陳重修,『二氧化碳與二氧化硫整合性控制技術之研究』,國立台灣大學環境工程研究所碩士論文,2000年。
26. 陳啟平,『氣動式生化反應器之設計,及其在藻類培養的應用』,國立清華大學化學工程研究所碩士論文,1996年。
27. 陳漢烱、李宏台、盧文章,『動手種出生質柴油田』,科學月刊,2006年8月。
28. 斯托著,陳儀蓁譯,『光合細菌的工業革命-用藍綠來對付工廠排放的二氧化碳細菌』,科學人雜誌,2005年10月。
29. 黃汝賢等,『環工化學』,三民書局,1999年。
30. 黃定國,『多重網狀導流板之氣舉式反應器的設計及其在幾丁聚醣生產上之應用』,國立清華大學化學工程研究所碩士論文,1999年。
31. 黃騰德,『以氫氧化鈣再生煙道氣中二氧化碳吸收劑—氨水溶液之研究』,國立成功大學環境工程研究所碩士論文,2003年。
32. 經濟部能源局,能源名詞,2007。http://www.moeaec.gov.tw/PublicService/ps_EnergyTerm.asp。
33. 葉俊良,『在光生化反應器中以二階段策略培養微藻生產油脂之研究』,國立成功大學化學工程研究所碩士論文,2006年。
34. 賈有元,『綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條件暨培養方法之研究』,國立中興大學食品科學研究所碩士論文,2004年。
35. 藍大鈞,『藻類固定二氧化碳與藻體的利用研究』,長庚大學化學工程研究所碩士論文,2001年。
36. 蘇宗振,『打造綠色油田』,能源報導,經濟部能源局,2006年4月。
37. 蘇惠美,『餌料生物之培養與利用』,台灣省水產試驗所東港分所發行,1999年。
38. 顧洋,『氣候變遷對工業發展之影響,地球環境變遷—地球溫暖化、溫室效應氣體對策研討會論文集』,p.99-103,1995年。
39. Appenzeller, T., National geographic中文版, 2004, 2月。
40. Bai, H., and Yeh, A. C., “Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions”, The Science of Total Environment, 228, p.121-133, 1999.
41. Becker, E. W., “Microalgae: Biotechnology and Microbiology”, the Press Syndicate of the University of Cambridge, 1994.
42. Binaghi, L., Borghi, A. D., Lodi, A., Converti, A., and Borghi, M. D., “Batch and Fed-batch Uptake of Carbon Dioxide by Spirulina platensis”, Journal of Process Biochemistry, 38, p.1341-1346, 2003.
43. Borowitzka, M. A., “Calcification in algae: mechanisms and the role of metabolism. CRC Critical Rev”, Journal of Plant Sci., 6, p.1-45, 1987.
44. Buchanan, B. B., Gruissem, W., and Jones, R. L., ”Biochemistry and molecular biology of plants”, American Society of Plant Physioloists, p.418, 2000.
45. Carvalho, A. P., and Malcata, F. X., “Transfer of Carbon Dioxide within Cultures of Microalgae: Plain Bubbling versus Hollow-Fiber Modules”, Biotechnology Progress, 17, p.265-272, 2001.
46. Chisti, Y., “Biodiesel from microalgae”, Journal of Biotechnolgy Advances, 25, p.194-306, 2007.
47. D’Souza, F. M. L., and Kelly, G. J., ” Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica)on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus)larvae”, Journal of Aquaculture, 181, p.311-329, 2000.
48. Felsenstein, J., “Confidence limits on phylogenies: An approach using the bootstrap“, Journal of Evolution, 39, p.783-791, 1985.
49. Fuller1, N. J., Campbell, C., Allen, D. J., Pitt, F. D., Zwirglmaier, K., Gall, F. L., Vaulot, D., and Scanlan, D. J., ” Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids”, Aquatic Microbial Ecology, 43, p.79-93, 2006.
50. Georgiev, O. I., Nikolaev, N., Hadjiolov, A.A., Skryabin, K.G., Zakharyev, V.M., and Bayev, A.A., “The structure of the yeast ribosomal RNA genes. Complete sequence of the 25 S rRNA gene from Saccharomyces cerevisiae”, Journal of Nucleic Acids Research, 9, p.6953-6958, 1981.
51. Hsueh, H. T., Chu, H., and Chang, C. C. ,“Identification and Characteristics of a Cyanobacterium Isolated from a Hot Spring with Dissolved Inorganic Carbon”, Journal of Environmental Science and Technology, 41, p.1909-1914, 2007.
52. Atomi, H., “REVIEW: Microbial Enzymes Involved in Carbon Dioxide Fixation “, Journal of Bioscience and Bioengineering, 6, p.497-505, 2002.
53. Henley, W. J., Hironaka, J. L., Guillou, L., Buchheim, M. A. Buchheim, J. A., Fawley, M. W., and Fawley, K. P., “Phylogenetic analysis of the “Nannochloris-like” algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta)”. Journal of Phycologia, 43(6), p.641-652, 2004.
54. Michiki, H., “Biological CO2 Fixation and Utilization Project”, Journal of Energy Convers. Mgmt, 36, p.701-905, 1995.
55. Hellebust, J. A., “Handbook of Phycological methods: physiological and Biochemical methods”, London: Cambridge University Press, 1978.
56. Hillis, D. M., and Bull, J. J., “An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis“, Journal of Systematic Biology, 42, p.182-192, 1993.
57. Hogestu, D., and Miyachi, S., “Role of carbonic anhydrase in photosynthetic CO2 fixation in Chlorella”, Journal of Plant Cell Physiology, 20, 747-756, 1979.
58. Hwang, J. Y., ”Low Cost BioScrubber for Greenhouse Gas Control-Topical Report for Phase I”, DE-AC26-98FT40414, 1999.
59. Alley, R. et al., IPCC(Intergovernmental Panel on Climate Change),2007年2月2日。
60. Watson, R. T. et al., IPCC(Intergovernmental Panel on Climate Change)第三次評估報告,2001。
61. J. C. Abanades, and D. Alvarez, “Conversion Limits in the Reaction of CO2 with Lime”, Journal of Energy & Fuels, 17, p.308-315, 2003.
62. Yamaberi, K., Takagi, M., and Yoshida, T., “Nitrogen depletion for intracellular triacylglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil”, Journal of Marine Biotechnology, 6, p.44–48, 1998.
63. Yamaberi, K., Takagi, M., and Yoshida, T., “Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil”, Journal of Marine Biotechnology, 6, p.44-48, 1997.
64. Kimura, M., “A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences“, Journal of Molecular Evolution, 16, p.111-120, 1980.
65. Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M., “MEGA2: Molecular Evolutionary Genetics Analysis Software”, Journal of Bioinformatics, 17, p.1244-1245,2001.
66. Maeda, K., Owada, M., Kimura, N., Omata, K., and Karube, I., “CO2 Fixation from the Flue Gas on Coal-fired Thermal Power Plant by Microalgae”, Journal of Energy Conversion and Management, 36, p.717-720, 1995.
67. Martin-Jezequel V., Hildebrand, M., Brzezinski, and M. A., “Silicon Metabolism in Diatoms: Implications for Growth”, Journal of phycology, 36, p.821-840, 2000.
68. Martins, I., Oliveira, J. M., Flindt, M. R., and Marques, J. C., “The Effect of Salinity on the Growth Rate of the Macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego Estuary (west Portugal)”, Journal of Acta Oecologica, 20, p.259-265, 1999.
69. Allen, M. B., “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte“, Journal of Archly ffir Mikrobiologie, 32, p.270-277, 1959.
70. Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa T., and Tanaka, K., “Improvement of Culture Conditions and Evidence for Nuclear Transformation by Homologous Recombination in a Red Alga, Cyanidioschyzon merolae 10D “, Journal of Plant Cell Physiology, 45, p.667-671, 2004.
71. Mirón, A. S., García, M.-C. C., Camacho, F. G., Grima, E. M., and Chisti, Y., “Growth and Biochemical Characterization of Microalgal Biomass Produced in Bubble Column and Airlift Photobioreactors: Studies in Fed-batch Culture”, Journal of Enzyme and Microbial Technology, 31, p.1015-1023, 2002.
72. Morita, M., Watanabe, Y., and Saiki, H., “High Photosynthetical Productivity of Green Microalga Chlorella sorokiniana”, Journal of Applied Biochemistry and Biotechnology, 87, p.203-218, 2000.
73. Takagi, M., Karseno, and Yoshida, T., “Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells”, Journal of Bioscience And Bioengineering, 101, p.223-226, 2006.
74. Ogbonna, J. C., Yada, H., and Tanaka, H., “Kinetic Studyon Light-limited Batch Cultivation of Photosynthetic Cells.”, Journal of Fermentation and Bioengineering, 80, p.259-264, 1995.
75. Radmer, R. J., and Parker, B. C., “Commercial Applications of Algae – Opportunities and Constraints”, Journal of Applied Phycology, 6, p.93-98, 1994.
76. Ratledge, C., “ Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production”, Journal of Biochimie, 86, p.807-815, 2004.
77. Raven, P. H., Johnson, and G. B., “Biology”, McGraw-Hill, sixth edition, 2002.
78. Renaud, S. M., and Parry, D. L., “Microalage for Use in Tropical Aquaculture 2 Effect of Salinity on Growth, Gross Chemical-composition and Fatty-acid Composition of 3 Species of Marine Microalgae”, Journal of applied Phycology, 6, p.347-356, 1994.
79. Rittmann, B. E., and McCarty, P. L., “Environmental Biotechnology: Principles and Applications”, McGraw-Hill, 2001.
80. Rubio, F. C., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., and Grima, E. M., “Prediction of Dissolved Oxygen and Carbon Dioxide Concentration Profiles in Tubular Photobioreactors for Microalgal Culture”, Journal of Biotechnology and Bioengineering, 62, p.71-86, 1999.
81. Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., and Bullister, J. L., Wanninkhof, R., Wong, C. S., Walace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F., “The Oceanic Sink for Anthroporgenic CO2.”, Journal of Science, 305, p.362-371, 2004.
82. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., and Karbube, I., “Chlorella Strains from Hot Springs Tolerant to High Temperature and High CO2”, Journal of Energy Conversion and Management, 36, p.693-696, 1995.
83. Schpeper, T., Al-Rubeai, M., Corne, J. F., Dussap, C. G., Elias, C. B., Gomes, J., Gros, J.-B., Hill, D. C., Joshi, J. B., Menawat, A. S., Nisbet, L. J., Pulz, O., Scheibenbogen, K., and Wrigley, S. R., “Bioprocess and Algae Reactor Technology”, Journal of Apoptosis, 1998.
84. Scragg, A. H., Illman, A. M., Carden, A., and Shales, S. W., “Growth of microalgae with increased caloric values in a tubular bioreactor”, Journal of Biomass and Bioenergy, 23, p.67-73, 2002.
85. Sobczuk, M. T., Camacho, F. G., Rubio, F. C., Fernández, F. G. A., and Grima, E. M., “Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors”, Journal of Biotechnology and Bioengineering, 67, p.465-475, 1999.
86. Stumm, W., and Morgan, J. J., “Aquatic Chemistry”, WILEY, third edition, 1996.
87. Sukenik, A., Carmeli, Y., and Berner, T., “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp.”, Journal of Phycology, 25, p.686-692, 1989.
88. Tapie, P., and Bernard, A., “Microalgae Production: Technical and Economic Evaluation”, Journal of Biotechnology and Bioengineering, 32, p.873-855, 1987.
89. Terry, K. L., and Raymond, L. P., “System Design for the Autotrophic Production of Microalgae”, Journal of Enzyme and Microbial Technology, 7, p.474-487, 1985.
90. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., “The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools” Nucleic Acids Research, 24, p.4876-4882, 1997.
91. Watanabe, Y., and Hall, D. O., “Photosynthetic CO2 Conversion Technologies Using a Photobioreactor Incorporating Microalgae - Energy and Material Balances”, Journal of Energy Conversion and Management, 37, p.1321-1326, 1996.
92. Wikfors, G. H., Twarog, J. W., JR., and Ukeles, R., “Influence of Chemical Composition of Algal Food Sources on Growth of Juvenile Oysters, Crassostrea Virginica”, Journal of Biol. Bull, 167, p.251-263, 1984.
93. Yamasaki, A., “An Overview of CO2 Mitigation Options for Global Warming-emphasizing CO2 Sequestration Options”, Journal of Chemical Engineering of Japan, 36, p.361-375, 2003.
94. Yeh, J. T., and Pennline, H. W., “Study of CO2 Absorption and Desorption in a Packed Column”, Journal of Energy & Fuels, 15, p.274-278, 2001.
95. You, T., and Barnett, S. M., “Effect of Light Quality on Production of Extracellular Polysaccharides and Growth Rate of Porphyridium cruentum”, Biochemical Engineering Journal, 19, p.251-258, 2002.
96. Zevenhoven, R., and Kohlmann, J., “CO2 Sequestration by Magnesium Silicate Mineral Carbonation in Finland, Second Nordic Nordic Mini-Symposium on Carbon Dioxide Capture and Storage”, Goteborg, p.13-18, 2001.