| 研究生: |
黃彥翰 Huang, Yan-Han |
|---|---|
| 論文名稱: |
利用MIS結構改善金屬半導體界面的費米能階釘札效應 Improvement of Fermi-level Pinning Effect by MIS Structure for the Interface between Metal and Semiconductor |
| 指導教授: |
王永和
Wang, Yeong-Her 方炎坤 Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 費米能階釘札 、有效蕭特基能障 、室溫液相沉積法 、矽 、互補式電晶體 、非退火源極/汲極 、無接面電晶體 |
| 外文關鍵詞: | fermi level depinning, effective Schottky barrier height, room temperature liquid-phase deposition, silicon, CMOS, nonalloyed source/drain, junctionless FET |
| 相關次數: | 點閱:138 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於費米能階釘扎效應(Fermi-level Pinning Effect),在半導體與金屬介面處,照成有效金屬的功函數幾乎與理論能階位置無關。並構成很高的蕭特基能障 因而 提 高 歐姆接觸電阻及妨礙元件的電子與電洞的傳輸。這個釘扎效應可以是metal-induced gap states(MIGS)或因為金屬與矽,鍺,三五族等半導體的接面中有許多的表面缺陷(如斷裂鍵)或電偶極而形成。
在本論文中,我們藉由插入超薄絕緣層或摻雜金屬在金屬與矽基板中,詳細實驗研究改善費米能階釘扎效應與降低蕭特基能障。並選用製程簡單與低成本的室溫液相沉積法(RLD)來實現摻雜金屬與沉積薄膜。這是一種非傳統退火方式但可達極低接面的片電阻與接觸電阻的改善歐姆接觸方法。
因為矽的低成本,無論現在或未來在互補式電晶體中皆是最佳的通道材料選擇。甚至超越7奈米節點技術,也都可以在矽材料之元件中實現。故吾人選擇在矽基板上成長介電材料。並利用線性與對數電流密度圖與時間改變來觀察介電材料的不同厚度。吾人相信利用此種非退火的方式來達到接面非常低的源極/汲極片電阻與接觸電阻將是未來CMOS的非常重要技術。
本論文中針對這項技術作系統化研究,我們發現這些接觸電阻與薄膜厚度或摻雜金屬不同有很強的關係,表示在矽的表面的介面狀態缺陷,在費米能階釘扎效應中扮演很重要的角色。
Owing to Fermi level pinning (FLP), change of effective metal work functions on metal/semiconductor contacts becomes almost unavailable, and thus leading to a high effective Schottky Barrier Height (SBH) for electrons and holes transport. The origins of this pinning effect have been ascribed to either metal induced gap states or surface states arise from the native defects at the metal / Si, Ge or III-V surface, such as dangling bonds or dipole.
On the other hand, silicon (Si) is of still the best candidate for the channel material in now and near future complementary metal-oxide-semiconductor (CMOS) devices following the Moore's Law, even beyond 7nm node technology. In the limiting scaled CMOS devices, a nonalloyed source/drain (S/D) junction with very low sheet and contact resistances should be overcame.
In this work, we present a detailed experimental study of Fermi level deepening, Schottky barrier height reduction to Si and contact resistivity reduction using an ultrathin insulators or doped metal between metal and Si. Besides, a simple and room temperature liquid-phase deposition (RLD) is utilized to dope metal or deposit a low cost and high dielectric constant thin film, such as TiO2, ZrO2 and Al2O3. In order to research the impact of the dielectric choice on n-Si-based MIS contacts properties, current density (J-V) calculations were performed using the algorithm and linear lines displayed in variable thickness or times.
The studied results show that the depinning effect presents a strong dependence on the thin film thickness or doped metal, indicating the interface states due to the native defects on Si surface are likely to play the dominant role in FLP.
[1] Shine, Gautam, and Krishna C. Saraswat. "Limits of specific contact resistivity to Si, Ge and III-V semiconductors using interfacial layers." Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, Glasgow, Scotland. 2013.
[2] Kim, Jiseok, et al. "Specific contact resistivity of n-type Si and Ge MS and MIS contacts." 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2015.
[3] Borrel, J., et al. "Considerations for efficient contact resistivity reduction via Fermi Level depinning-impact of MIS contacts on 10nm node nMOSFET DC characteristics." VLSI Technology (VLSI Technology), 2015 Symposium on. IEEE, 2015.
[4] Islam, Raisul, Gautam Shine, and Krishna C. Saraswat. "Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts." Applied Physics Letters 105.18 (2014): 182103.
[5] Zhou, Yi, et al. "Alleviation of Fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide." Applied Physics Letters 93.20 (2008): 2105
[6] Kobayashi, Masaharu, et al. "Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application." Journal of applied physics 105.2 (2009): 023702.
[7] Lee, Donkoun, et al. "The influence of Fermi level pinning/depinning on the Schottky barrier height and contact resistance in Ge/CoFeB and Ge/MgO/CoFeB structures." Applied Physics Letters 96.5 (2010): 052514.
[8] Dumas, D. C. S., et al. "Silver antimony Ohmic contacts to moderately doped n-type germanium." Applied Physics Letters 104.16 (2014): 162101.
[9] Hu, Jenny, et al. "Fermi-level depinning of GaAs for Ohmic contacts." Device Research Conference, 2008. IEEE, 2008.
[10] Hu, Jenny, Krishna C. Saraswat, and H-S. Philip Wong. "Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts." Journal of Applied Physics 107.6 (2010): 063712.
[11] Hu, Jenny, Krishna C. Saraswat, and H-S. Philip Wong. "Experimental demonstration of In 0.53 Ga 0.47 As field effect transistors with scalable nonalloyed source/drain contacts." Applied Physics Letters 98.6 (2011): 062107-3.
[12] Yuan, Ze, et al. "Schottky barrier height reduction for metal/n-GaSb contact by inserting TiO2 interfacial layer with low tunneling resistance." Applied Physics Letters 98.17 (2011): 172106.
[13] Roy, Arunanshu M., Jason Lin, and Krishna C. Saraswat. "The effect of fixed charge in tunnel-barrier contacts for Fermi-level depinning in germanium." IEEE Electron Device Letters 33.6 (2012): 761-763.
[14] Ang, K-W., et al. "Effective Schottky barrier height modulation using dielectric dipoles for source/drain specific contact resistivity improvement." Electron Devices Meeting (IEDM), 2012 IEEE International. IEEE, 2012.
[15] Heine, Volker. "Theory of surface states." Physical Review 138.6A (1965): A1689.
[16] Louie, Steven G., and Marvin L. Cohen. "Electronic structure of a metal-semiconductor interface." Physical Review B 13.6 (1976): 2461.
[17] Nishimura, Tomonori, Koji Kita, and Akira Toriumi. "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface."Applied Physics Letters 91.12 (2007): 123123.
[18] Wu, Jia-Rong, et al. "Impact of fluorine treatment on Fermi level depinning for metal/germanium Schottky junctions." Applied Physics Letters 99.25 (2011): 253504.
[19] Thathachary, Arun V., et al. "Fermi level depinning at the germanium Schottky interface through sulfur passivation." Applied Physics Letters 96.15 (2010): 2108.
[20] Yamane, K., et al. "Effect of atomically controlled interfaces on Fermi-level pinning at metal/Ge interfaces." Applied Physics Letters 96.16 (2010): 162104.
[21] Iyota, Masatoshi, et al. "Ohmic contact formation on n-type Ge by direct deposition of TiN." Applied Physics Letters 98.19 (2011).
[22] Wu, Zheng, et al. "Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness." IEEE Transactions on Electron Devices59.5 (2012): 1328-1331.
[23] Yamamoto, Keisuke, et al. "Role of an interlayer at a TiN/Ge contact to alleviate the intrinsic Fermi-level pinning position toward the conduction band edge." Applied Physics Letters 104.13 (2014): 132109.
[24] Seo, Yujin, et al. "The Mechanism of Schottky Barrier Modulation of Tantalum Nitride/Ge Contacts." IEEE Electron Device Letters 36.10 (2015): 997-1000.
[25] Manik, Prashanth Paramahans, et al. "Fermi-level unpinning and low resistivity in contacts to n-type Ge with a thin ZnO interfacial layer." Applied Physics Letters 101.18 (2012): 182105.
[26] Kobayashi, Masaharu, et al. "Fermi-level depinning in metal/Ge Schottky junction and its application to metal source/drain Ge NMOSFET." 2008 Symposium on VLSI Technology. IEEE, 2008.
[27] Zhou, Yi, et al. "Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films." Applied Physics Letters96.10 (2010): 102103.
[28] Oh, Il-kwon, et al. "The effect of La2O3-incorporation in HfO2 dielectrics on Ge substrate by atomic layer deposition." Applied Surface Science 287 (2013): 349-354.
[29] Gajula, D. R., et al. "Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers." Applied Physics Letters104.1 (2014): 012102.
[30] Park, In-Sung, et al. "Metal-HfO2-Ge capacitor: Its enhanced charge trapping properties with S-treated substrate and atomic-layer-deposited HfO2 layer."Journal of Vacuum Science & Technology A 33.1 (2015): 01A153.
[31] Nishimura, Tomonori, Koji Kita, and Akira Toriumi. "A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film." Applied physics express 1.5 (2008): 051406.
[32] Lin, J-Y. Jason, et al. "Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height." Applied Physics Letters 98.9 (2011): 092113.
[33] Majumdar, K., et al. "Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014.
[34] Dimoulas, A., et al. "Fermi-level pinning and charge neutrality level in germanium." Applied physics letters 89.25 (2006): 252110-252110.
[35] Lee, Y-J., et al. "A novel junctionless FinFET structure with sub-5nm shell doping profile by molecular monolayer doping and microwave annealing." 2014 IEEE International Electron Devices Meeting. IEEE, 2014.
[36] Lee, Yao-Jen, et al. "High performance poly Si junctionless transistors with sub-5nm conformally doped layers by molecular monolayer doping and microwave incorporating CO2 laser annealing for 3D stacked ICs applications."2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
[37] Yeo, Yee-Chia, Tsu-Jae King, and Chenming Hu. "Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology." Journal of Applied Physics 92.12 (2002): 7266-7271.
[38] Li, Zhiqiang, et al. "Low electron Schottky barrier height of NiGe/Ge achieved by ion implantation after germanidation technique." IEEE Electron Device Letters 33.12 (2012): 1687-1689.
[39] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom and J. S. Speck, "Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN," Journal of Vacuum Science & Technology B, vol. 23, no. 2, pp. 499-506, 2005.
[40] Y. A. a. T. Fukuda, "TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films," Japanese Journal of Applied Physics, vol. 32, no. 8, pp. 1167-1168, Aug. 1993.
[41] E. J. Miller, X. Z. Dang and E. T. Yu, "Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors," Journal of Applied Physics, vol. 88, pp. 5951-5958, Nov. 2000.
[42] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, Mar. 2001.
[43] H. Nagayama, H. Honda and H. Kawahara, "A new process for silica coating," Journal of The Electrochemical Society, vol. 135, no. 8, pp. 2013-2016, 1988.
[44] S. Jie, H. Lizhong, W. Zhaoyang and D. Guotong, "Silica and alumina thin films grown by liquid phase deposition," Materials Science Forum, Vols. 475-479, pp. 1725-1728, 2005.