簡易檢索 / 詳目顯示

研究生: 趙邑
Chao, Yi
論文名稱: 回收柴油引擎排氣廢熱之甲醇重組產氫參數研究
Parametric Study on Methanol Reforming to Produce Hydrogen with Exhaust Heat Recovery of Diesel Engine
指導教授: 吳鴻文
Wu, Hung-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 92
中文關鍵詞: 甲醇水蒸汽重組甲醇轉化率產氫率廢熱回收率
外文關鍵詞: Methanol steam reformer, Methanol conversion rate, Hydrogen production, Waste heat recovery ratio
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係使用甲醇水蒸汽重組法進行全因子實驗,並計算電熱片配合柴油引擎排氣廢熱回收於加熱階段Ⅰ之節能率及加熱階段Ⅱ之廢熱回收率,使用實驗結果求得最大產氫率之參數搭配,並以SIMPLE -C三維數值方法模擬印證實驗結果,找出不同加熱溫度(200、250及300 °C)、水對甲醇莫耳比(0.9、1.1及1.3)與攜帶氣體流率(40、70及100 cm3/min)對產氫率之影響,最後量測並記錄產氫濃度、CO濃度、CO2濃度及N2濃度後,計算其甲醇轉化率、產氫流率及助燃氣體與阻燃氣體的比值。
    本重組器加熱熱源來自電熱片及柴油引擎排氣之廢熱,目的是為了將引擎排放之廢熱回收利用,並使重組器內溫度分布更均勻,有利提升甲醇轉換率及富氫氣體率。
    本實驗結果顯示,當攜帶氣體流率為40 cm3/min、重組反應溫度為300 °C時,得到最高氫氣產量為0.802 mole/min,相當於1178.94 l/hr。電熱片配合排氣回收廢熱時,最大廢熱回收率於S/C比為1.3、重組反應溫度為300 °C時約13.18 %;最大節能率於重組器由室溫加熱至重組反應溫度為300 °C時約33.51 %。

    This thesis is to conduct a full factorial experiment with methanol steam reforming, and to calculate energy saving rate at heating stageⅠand the waste heat recovery rate at heating stageⅡ using electric heating plate and exhaust gas from a diesel engine. The experimental results are used to obtain the parameters at maximum hydrogen production and confirmed with numerical simulation results by a three dimensional SIMPLE-C algorithm. How heating temperature (200 °C, 250 °C, and 300 °C), mole ratio of steam to carbonate S/C (0.9, 1.1, and 1.3), and carrier gas volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min) affect the production of hydrogen is found out. Finally, the hydrogen concentration, the concentration of CO, CO2 concentration, and N2 concentration are measured and recorded to calculate the conversion of methanol, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio.
    The heat source of this heat reformer comes from electric heating plate and waste heat of exhaust gas from diesel engines. This purpose is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial to enhance the methanol conversion rate and hydrogen-rich gas production.
    Experimental results show that the highest hydrogen production was 19.65 l/min equivalent to 1178.94 l/hr occurring at the volume flow rate of carrier gas of 40 cm3/min and reforming reaction temperature of 300 °C. With the electric heating plate and heat recovered from exhaust gas, the maximum waste heat recovery rate is 13.18 % occurring at S/C of 1.3 and the reforming reaction temperature of 300 °C and the most energy saving rate is 33.51 % approximately existing at the reformer heated from room temperature to the reforming reaction temperature of 300 °C.

    Content Abstract I 摘要 III Acknowledgement IV Content V List of Tables VIII List of Figures IX Nomenclature XII Chapter 1 Introduction 1 1-1. Background 1 1-2. Literature review 4 1-3. Research directions 9 Chapter 2 Theoretical Background 12 2-1. Selection of the reforming fuel 12 2-2. The principle of methanol reforming reaction 13 2-2-1 Steam Reforming 13 2-2-2 Partial Oxidation 14 2-2-3 Auto Thermal Reforming 15 2-3. Engine Exhaust Waste Heat Recovery 16 2-4. Numerical simulation and model description 17 2-4-1 The Basic Assumption 18 2-4-2 Governing Equations 19 2-4-3 Continuity Equation 19 2-4-4 Momentum Equation 19 2-4-5 Energy Equation 20 2-4-6 Component Transport Equation 21 2-4-7 Chemical Reaction Rate 22 2-5. Numerical Methods 23 2-5-1 Discretization 24 2-5-2 Algorithm for SIMPLE-C 24 2-5-3 Under-Relaxation 25 2-5-4 Convergence Criteria 26 2-6. Grid 26 Chapter 3 Equipment and Method 28 3-1. Experimental Description 28 3-2. Experimental Equipment 29 3-2-1. The Reactor Body 29 3-2-2. Fuel Supply System 30 3-2-3. Heating and Temperature Control Systems 31 3-2-4. Cooling System 32 3-2-5. Gas Sampling and Analysis System 33 3-2-6. Exhaust Gas Analysis System 33 3-3. Experimental Steps 34 3-4. Experimental Considerations 35 Chapter 4 Results and Discussion 37 4-1. Parametric Study of Hydrogen Production 38 4-1-1. Basic Parameters 38 4-1-2. Different Parameters Impact for the Methanol Reformer Hydrogen Production Performance 39 4-1-3. Waste Heat Recovery and Energy Saving Rate 41 4-2. Numerical Methods 44 4-2-1. Grid Independent Analysis 44 4-2-2. Numerical Simulation and Verification Documents [24, 33] 45 4-2-3. The Maximum Hydrogen Production Parameters of the Simulation Experiment 46 Chapter 5 Conclusion and Suggestion 50 5-1. Conclusion 50 5-2. Suggestion 52 References 54 Vita 92

    1.National Policy Fundation
    http://old.npf.org.tw/research-a5-96-3.htm。
    2.Ayhan Demirbas, Biohydrogen For Future Engine Fuel Demands, Taylor & Francis Group, LLC, pp.93, 2009.
    3.Allen Fuhs, Hybrid Vehicles and the Future of Personal Transportation, Springer Dordrecht Heidelberg London New York, 2009.
    4.Liou, Fu-Shuei, He, Li-Jun, Heitz Peter Berg,“ The Current Situation and Development Prospect of Hydrogen fuel internal combustion engines”, Automotive Engineering, Vol.7, pp. 621-625, 2006.
    5.Chiu, Hsin-Sheng, Chen, Fa-Lin, Lu, Hsi-Min, “Hydrogen production and hydrogen storage technology”, Wu-Nan Culture Enterprise, 2007.
    6.Shih, Chuan-Sheng, “Graphic hydrogen”, Shi Mao Publishing Ltd, 2009.
    7.Han, J.S, Kim, I.S., Choi, K.S., “Purifier-integrated methanol reformer for fuel cell vehicles”, J. Power Sources, Vol.86, pp. 223-227, 2000.
    8.B. Emonts, J. Bøgild Hansen, H. Schmidt, T. Grube, B. Höhlein, R. Peters, A. Tschauder, “Fuel cell drive system with hydrogen generation in test”, J. Power Sources, Vol.86, pp.228-236, 2000.
    9.N. Edwards, S.R. Ellis, J.C. Frost, S.E. Golunski, A.N.J.van. Keulen, N.G. Lindewald, J.G. Reinkingh, “On-board hydrogen generation for transport application:the HotSpot methanol processor”, J. Power Sources, Vol.71, pp.123-128, 1998.
    10.B. Emonts, J. Bøgild Hansen, S. Loegsgaard Jørgensen, B. Höhlein, R. Peters, “Compact methanol reformer test for fuel-cell powered light-duty vehicles”, J. Power Sources, Vol.71, pp.288-293, 1998.
    11.B. Linddström, L.J. Pettersson, “Development of a methanol fuelled reformer for fuel cell application”, J. Power Sources, Vol.118, pp.71-78, 2003.
    12.J.S. Suh, M.T. Lee, R. Greif, C.P. Grigoropoulos, “A study of steam methanol reforming in a microreactor”, J. Power Sources, Vol.173, pp.458-466, 2007.
    13.B. Hohlein, M. Boe, H.J. Bogild, P. Brockerhoff, G. Colsman, B. Emonts, “Hydrogen from methanol for fuel cells in mobile system: development of a compact reformer”, J. Power Sources, Vol.61, pp.143-147, 1996.
    14.J. Sun, D. Luo, P. Xiao, L. Jigang, S. Yu, ‘’High yield hydrogen production from low CO selectivity ethanol steam reforming over modified Ni-Y2O3 catalysts at low temperature for fuel cell application” J.Power Sources, Vol.184, pp.385-391, 2008.
    15.Tsolakis, A. Megaritis, ‘’Catalytic exhaust gas fuel reforming for diesel engines-effects of water addition on hydrogen production and fuel conversion efficiency‘’Int. J. Hydrogen Energy, Vol.29, pp.1409-1419, 2004.
    16.Y. Hacohen, E. Sher, “Fuel consumption and emission of SI engine fueled with H2-enriched gasoline”, IEEE paper, No. 899403, pp. 2485-2490, 1989.
    17.N. Saravanan, G. Nagarajan, “An experimental investigation of hydrogen-enriched air induction in a diesel engine system”, International Journal of Hydrogen Engery, Vol.33, pp.1769-1775, 2008.
    18.Enrico Conte, Konstantinos Boulouchos, “Influence of Hydrogen-Rich-Gas Addition on Combustion, Pollutant Formation and Efficiency of an IC-SI Engine”, SAE paper, No.2004-01-0972, 2004.
    19.Mariana M.V.M. Souza, Martin Schmal, “Autothermal reforming of methane over catalysts’’, Applied Catalysts A: General, Vol.281, p19-24, 2005.
    20.A. Tsolakisa, A. Megaritis, D. Yapc, “Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels”, Energy, Vol.33, pp.462-470, 2007.
    21.V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, R.V. Seeniraj, “Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system”, Applied Energy, Vol. 88, pp.77-87, 2011.
    22.R.F. Horng, C.R. Chen, T.S. Wu, C.H. Chan, “Cold start response of a small methanol reformer by partial oxidation reforming of hydrogen for fuel cell”, Applied Thermal Engineering, Vol.26, pp.1115-1124, 2006.
    23.Huang, Shung-Jie, “Parametric Study on the Performance of Methanol Steam Reformer with Taguchi Method”, Master Thesis, Department of Systems and Naval Mechatronic Engineering, NCKU, 2013.
    24.Lin, Shi-Jie, “Numerical Simulation and Analysis of Methanol Atomization and Reforming Employing an Air-blast Atomizer”, Master Thesis, Department of Aeronautics and Astronautics, NCKU, 2009.
    25.Su, Yu-Lin,“ Numerical simulation applied to methanol Steam Reforming Using Catalyst heating”, Master Thesis, Department of Systems and Naval Mechatronic Engineering, NCKU, 2013
    26.Green Car Congress,
    http://www.greencarcongress.com/2005/02/doe_cofunds_12_.html
    27.Jhou, Jhong-Yang,“ An Experimental Study of the Performance on Reformer of Fuel Cell and Effect of Catalyst”, Master Thesis, Department of Mechanical Engineering, NTU, 2005.
    28.Yu, Ren-Bin, “Numerical Simulation of droplets formation from Bubble Inkjet”, Master Thesis, Department of Mechanical Engineering, Yun Tech, 2007.
    29.J.B. Holman, “Experimental Methods for Engineers”, McGraw Hill Publications, 2003.
    30.Guo, Yao-Zong, Lin, Jin-Tsan, Wan, Ruei-Ying “ PEMFC preliminary studies as a vehicle power system”, Energy Quarterly, Volume XXVII, pp.93-103, 1997.
    31.Vehicle Energy Laboratory, KSU
    http://ksuvel.myweb.hinet.net/index-1.htm
    32.Zeng, Shi-Yan, “Study on the effect of added ammonia on hydrogen production by water electrolysis”, Master Thesis, Department of Systems and Naval Mechatronic Engineering, NCKU, 2011.
    33.S. Fukahori, H. Koga, T. Kitaoka, M. Nakamura, H. Wariishi, “Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis,” J. Hydrogen Energy, Vol.33, pp.1661-1670, 2008.

    無法下載圖示 校內:2019-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE