簡易檢索 / 詳目顯示

研究生: 李冠霖
Lee, Kuan-Lin
論文名稱: 以有機金屬氣相沉積法成長砷化鎵系列長波長量子井共振腔增強式光檢測器之研究
Study of Long Wavelength GaAs-based Resonant-cavtiy -enhanced Photodetectors with Multi-Quantum-Well Structures Grown by MOVPE
指導教授: 蘇炎坤
Su, Yain-Kuin
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 87
中文關鍵詞: 光檢測器共振腔布拉格反射鏡
外文關鍵詞: photodetector, DBR, resonant cavity
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們以有機金屬氣相沉積法在砷化鎵基板上成長砷銻化鎵以及砷化銦鎵量子井結構垂直式PIN 光檢測器以及結合共振腔結構之光檢測器。在傳統之PIN量子井結構光檢測器中我們使用了砷銻化鎵/砷化鎵量子井作為吸光層,其中銻之含量為0.23、0,25、0.29,其光激螢光頻譜之波長分別為1123nm、1183nm、1204nm,與元件未加偏壓之吸收頻譜較為接近;在逆偏操作下,元件之吸光波長有著極大之藍移量,在逆偏兩伏之操作下,其波長為1100nm、1098、1133,響應度為4.67mA/W、3.85mA/W、3.36mA/W,其中在銻含量為0.29之元件,從無逆偏到逆偏五伏之操作下,其藍移量可達超過100nm。接著為了更進一步增加PIN光檢測器之吸收效率,我們嘗試成長含共振腔結構之光檢測器,同時搭配Matlab軟體之模擬輔助磊晶參數之調整,在吸收層部分我們使用了砷化銦鎵/砷化鎵量子井結構,其吸收波長約在1.2μm及1.064μm,其中我們在下層之布拉格反射鏡對數為20對,其反射率可達95%以上,在上層之對數部份,我們探討了不同對數之影響,其中在1.2μm之元件部份,我們發現上層布拉格反射鏡對數為6對時,在逆偏18伏操作下有26.07%之量子效率;而在1.064μm之元件部分,上層布拉格反射鏡對數為3對時,在逆偏0.2伏操作下有33.40%之量子效率。

    In this thesis, the GaAsSb and InGaAs PIN photodetectors and the resonant cavity enhanced (RCE) PIN photodetectors were grown on GaAs substrates by metal-organic vapor phase epitaxy (MOVPE).
    In the conventional PIN photodetectors, we use the GaAsSb/GaAs quantum wells as the absorption region, and the antimony composition is 0.23, 0.25, 0.29 respectively; from the PL spectrum, the wavelength were 1123nm, 1183nm and 1204nm, the value were close to the absorption spectrum of the unbiased devices; otherwise the large amounts of blueshift in the absorption spectrum of the biased devices, the absorption wavelength were 1100, 1098 and 1133 nm and the corresponding responsivity were 4.67, 3.85 and 3.36 mA/W under 2 reverse bias voltage. Specially, the amount of the blueshift was over 100nm from 0V to -5V. To further increase the quantum efficiency of the PIN structure, we try to grow the RCE PDs, meanwhile, we use the Matlab simulation software to modulate the growth condition; accordingly, the absorption region in the following section we use the InGaAs/GaAs type I QWs and theabsorption region were 1200 nm and 1064 nm respectively. The reflectance of the twenty pair bottom DBR layer was high enough to achieve more than 95%.
    To investigate the influence of the DBR layers we find out with 20 and 6 bottom and top DBR, the quantum efficiency achieve 28% at near 1.2μm under -18V; with 20 and 3 bottom and top DBR, it achieved 35% at near 1064 nm under -0.4 V

    Abstract (Chinese) ...................................................................................I Abstract (English)..................................................................................III Acknowledgements .................................................................................V Contents..................................................................................................VI Table Captions....................................................................................VIII Figure Captions......................................................................................IX Chapter 1 Introduction 1-1 Motivation .........................................................................................1 1-2 GaAs-based long wavelength photodetector..............................5 Chapter 2 Background & Theory of RCE photodetector 2-1 Theoretic Foundation of thePhotodetectors.........................................9 2-1-1 Mechanism of the Current Transport for Junction Photodetectors …………………………………………………9 2-1-2. Mechanisms of PIN Photodetectors................................11 2-2 Theoretical Analysis of PIN Photodetectors.....................................13 2-2-1 Dark Current ..…………………………………………...13 2-2-2. Responsivity and Quantum Efficiency.............................17 2-3 Basic theory of resonant cavity enhanced (RCE) PDs……………...21 2-3-1 Physics of Fabry-Perot (FP) cavity…………………...…21 2-3-2 Quantum efficiency & Reflectivity of DBR…………….23 2-3-3 Quantum confined Stark effect (QCSE)………………...23 2-4 Process procedures of PIN photodetector & resonant cavity enhanced (RCE) PIN photodetector……………………………………………….25 2-5 Characterized equipments..................................................................28 2-5-1 Responsivity measurement……........................................28 2-5-2. Current-Voltage Measurement System............................29 2-5-3. HR-XRD Characterization...............................................30 2-5-4 Photoluminescence Spectroscopy…….............................31 Chapter 3 Process and Technology of GaAsSb/GaAs PIN PD 3-1 Investigation of GaAsSb/GaAs MQW PIN PDs…….......................36 3-2 Experiment, result and discussion.....................................................37 3-3 Summary………………………........................................................38 References……………………................................................................44 Chapter 4 Measurement and Analysis of 1200nm RCE PDs 4-1 Introduction…………………………………………........................46 4-2 Structure, fabrication and tuning of resonant wavelength.................46 4-3 Characteristics of InGaAs RCE PDs……….....................................49 4-4 Summary…........................................................................................51 References………………………………………………………………64 Chapter 5 Fabrication and characteristic of 1064nm InGaAs/ GaAs MQW RCE PDs 5-1 Photodetectors operating at 1.064 μm...............................................66 5-2 Experiment and process.....................................................................67 5-3 Results and discussion.......................................................................68 5-4 Summary…………………………………………………………....70 References………………………………………………………………82 Chapter 6 Conclusion and future work……………………………....83 6-1 Conclusion.........................................................................................83 6-2 Future work........................................................................................85 References…………………………………………………………87

    KONDOW, M.UOMI, K., NIWA, A., KITATANI, T., WATAHIKI, S., and YAZAWA, Y. ”GalnNAs: a novel material for long-wavelength range laser diodes with excellent high-temperature performance”
    Cong, J., Zhang, X., Chen, K., and Xu, J., “Fiber optic Bragg grating based on hydrogels for measuring salinity,” Sensor and Actuators B,Vol. 87 pp. 487-490, Derickson, D., Fiber Optic Test and Measurement, Prentice Hall, 1998.
    J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges”, SEMICOND SCI TECH., Vol. 17, No. 8, pp. 880-891, 2002.
    I. Vurgaftman “Band parameters for III-V compound semiconductors and their alloys” J APPL PHYS., 89, (11), pp. 5815–5875, 2001
    S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, APPL PHYS LETT., Vol. 74, No. 5, pp. 729-731, 1999.
    J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah and R. Kurtz, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs”, J CRYST GROWTH., Vol. 195, No. 1-4, pp. 401-408, 1998.
    D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, “1 eV solar cells with GaInNAs active layer”, J CRYST GROWTH, Vol. 195, No. 1-4, pp. 409-415, 1998.
    X. Sun, J. Hsu, X.G. Zheng, J.C. Campbell, and A.L. Homels, Jr., “Polarization Crosstalk in High Index Contrast Planar Silica Waveguides” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 14, NO. 8, 2002.
    G. Liu, S.L. Chuang, and S.H. Park, “Modeling of Sb-based type-II quantum cascade lasers” J APPL PHYS, 88 5554. 2000.
    Kondow, M., Uomi, K., Kitatani, T., Watahiki, S., and Yazawa, Y. “GaInNAs: a novel material for long wavelength range laser diodes with excellent high temperature performance”, JPN J APPL PHYS, 35, p. 1273, 1996.
    Humbach, A. Stohr, U. Auer, E. C. Larkins, J. D. Ralston, and D. Jager “Strained-Layer Multiple-Quantum-Well InGaAs/GaAs Waveguide Modulators Operating Around 1 μm” IEEE PHOTONIC TECH L, VOL. 5, NO. 1, 1993.
    S. Li and J. Khurgin,” Electroabsorption in the type II super-lattices” APPL PHYS LETT, 60 (1992) 1969.
    X. Ren, H. Huang, Y. Chong, and Y. Huang "1.57 μm InP-BASED RESONANT-CAVITY-ENHANCED PHOTODETECTOR WITH InP/AIR-GAP BRAGG REFLECTORS" MICROW OPT TECHN LET, Vol.42, No.2, 2004
    X. Sun, S. Wang, X. G. Zheng, X. Li, J. C. Campbell, and A. L. Holmes, Jr. "1.31 μm GaAsSb resonant-cavity-enhanced separate absorption, charge and multiplication avalanche photodiodes with low noise" J APPL PHYS, Vol. 93, No. 1, 1 2003.
    X. Sun, J. Hsu, X. G. Zheng, J. C. Campbell and A. L. Holmes, “GaAsSb Resonant-Cavity-Enhanced Photodetector Operating at 1.3 μm ” IEEE PHOTONIC TECH L, 14 681 2002.
    I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren and B. I. Miller "Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy" APPL PHYS LETT 50(15), 13 1987
    M.C.Y. Chan, E.Herbert Li and K.S. Chan "Effect of interdiffusion on the subbands in an In0.65Ga0.35As/GaAs multiple-quantum well structure on GaAs substrate at 1.55μm operation wavelength "Mat. Res. Soc. Symp. Proc Vol 417 1996
    Joseph A. Jervase and Yousef Zebda “Characteristic Analysis of Resonant-Cavity-Enhanced (RCE) Photodetectors” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 7, 1998
    A.A. Dyomina, V.V. Lysak “Temperature behavior of top mirror reflection spectrum in intra-cavity-contacted oxide-confined vertical-cavity surface-emitting lasers” Optics and Lasers in Engineering 46 211–216 2008.
    Jun-Rong Chen, “Fabrication and Characterization of Temperature Insensitive 660-nm Resonant-Cavity LEDs” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 13, 2008
    J. B. He´ roux, X. Yang, and W. I. Wang “GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm” APPL PHYS LETT., Vol. 75, No. 18, 1 1999
    Q. Han, X. H. Yang, Z. C. Niu, H. Q. Ni, Y. Q. Xu, S. Y. Zhang, Y. Du, L. H. Peng, H. Zhao, C. Z. Tong, R. H. Wu, and Q. M. Wang “1.55 μm GaInNAs resonant-cavity-enhanced photodetector grown on GaAs” APPL PHYS LETT., 87, 111105 2005
    Wei Zhang, Zhong Pan, Lianhe Li, Ruikang Zhang,Yaowang Lin and Ronghan Wu “1.3 μm GaInNAs/GaAs Multiple-Quantum-Wells Resonant-Cavity-Enhanced Photodetectors” Proceedings of SPIE Vol. 4580, APOC, Beijing, China 2001
    Michael H. MacDougal, P. Daniel Dapkus, Aaron E. Bond, Chao-Kun Lin, and Jon Geske, “Design and Fabrication of VCSEL’s with AlxOy –GaAs DBR’s” IEEE J SEL TOP QUANT, Vol. 3, NO. 3, 1997
    Ibrahim Kimukin, Necmi Biyikli, Bayram Butun, Orhan Aytur, Selim M. Ünlü and Ekmel Ozbay. “InGaAs-Based High-Performance PIN Photodiodes” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 14, NO. 3, 2002
    Ravi Kuchibhotla, Anand Srinivasa, “Low-Voltage High-Gain Resonant-Cavity Avalanche Photodiode” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 3, NO. 4, 1991
    V. Arndt, H. MiJller, D. Dopheide “Comparison measurements for selection for use in Nd YAG LDA systems of suitable photodetectors” Experiments in Fluids zo pp.460 465 Springer-Verlag 1996
    R. Sidhu, H. Chen, N. Duan, G.V. Karve, J.C. Campbell and A.L. Holmes, Jr. “GaAsSb resonant-cavity avalanche photodiode operating at 1.06 μm” ELECTRONICS LETTERS Vol. 40 No. 20 2004
    H. Nie, O. Baklenov, P. Yuan, C. Lenox, B. G. Streetman, and J. C. Campbell, “Quantum-Dot Resonant-Cavity Separate Absorption, Charge, and Multiplication Avalanche Photodiode Operating at 1.06 μm” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 7, 1998
    O. Baklenov, H. Nie, K.A. Anselm, J.C. Campbell and B.G. Streetman "Multi-stacked quantum dot resonant-cavity photodetector operating at 1 .06μm" ELECTRONICS LETTERS Vol. 34 No. 7 1998

    下載圖示 校內:2011-07-03公開
    校外:2013-07-03公開
    QR CODE