| 研究生: |
廖玉潔 Liao, Yu-Chieh |
|---|---|
| 論文名稱: |
酵素分離與化學治療用藥層析分析之探討 Investigation of Enzyme Separation and Chromatographic Analysis of a Chemotherapeutic Drug |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 澱粉水解酵素 、beta 型環糊精 、固定化金屬離子親和性吸附劑 、衍生反應 、毛細電泳 、液相層析 、甲氧基胺 |
| 外文關鍵詞: | methoxyamine, alpha-amylase, immobilized metal ion affinity adsorbent, high performance liquid chromatography, beta-cyclodextrin, capillary electrophoresis, derivatization reaction |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文可以分為兩部分,第一部份是以固定化金屬離子親和性吸附劑 (immobilized metal ion affinity adsorbent) 對 a 型澱粉水解酵素 (a-amylase) 進行分離的探討,第二部份則是利用液相層析與毛細電泳對化療促進劑—甲氧基胺 (methoxyamine),建立分析方法。首先以 b 型環糊精 (b-cyclodextrin) 為基材、環氧氯丙烷 (epichlorohydrin, EPI) 為交聯劑進行交聯反應,EPI 不只能改善 b 型環糊精的機械強度同時也對交聯後的基材產生活化作用,以便可再耦合金屬離子,形成固定化金屬離子親和性吸附劑 b-CDcl-IDA-Cu2+。吸附劑只需 2 分鐘便能夠吸附完活性為 750 U/mL 的 Bacillus licheniformis a-amylase (BLA),而對活性達 38,900 U/mL、對應濃度為 1.0 mg/mL 左右的 BLA 吸附則需要兩個小時達平衡;以 500 mg 吸附劑對 BLA 進行快速吸附、脫附,連續吸、脫循環可達 50 次以上,且具有平均 97% 的回收效果,應用至 50 次吸附再經一次脫附的濃縮實驗中,則可回收 93% 的 BLA 酵素,且可高達超過 46 倍的濃縮效果。
將吸附劑應用於 Bacillus amyloliquefaciens a-amylase (BAA) 醱酵液,發現添加 PEG 有利於吸附,且藉由調整 PEG 的分子量以及添加量可以達到 95% 以上的吸附效果。在脫附劑 imidazole 中加入 200 mM NaCl 能夠改善 BAA 的脫附效果,使其提升超過 35% 之效益,而達到 95% 以上的脫附。對澄清與未澄清的 BAA 醱酵液之分離則分別可達 87% 與 81% 的回收效果。經吸附劑吸附固定之 BLA 只能展現原有活性的 5%,顯示吸附位置是作用在與酵素活性相關的活性座上,但究竟吸附位置是與基質作用的鍵結座或是進行水解反應的催化座,仍不明確。對解酯酵素 (esterase) 進行吸附實驗,結果顯示在混合 a 型澱粉水解酵素與解酯酵素的系統中,吸附劑對 a 型澱粉水解酵素的吸附幾乎不受到解酯酵素存在之影響,然而,對解酯酵素的吸附卻反而受到 a 型澱粉水解酵素的抑制。
在第二部份中,首先利用紫外-可見光光度計、LC-MS 與化學還原反應釐清分析物甲氧基胺與衍生劑4-二乙胺基苯甲醛(4-(diethylamino)benzaldehyde, DEAB) 的衍生反應,針對液相層析與毛細電泳的特性對衍生產物進行探討,以發展各自的分析方法。在高鹽類緩衝與有機相存在的流動相條件中,液相層析方法可以在 310 nm 測得衍生產物 4-(diethylamino)benzaldehyde o-methyloxime (DBMO) 的訊號,其線性範圍落在 0.10-10.0 mM 之間。另一分析方法則是使用 pH 2.5 的緩衝液於毛細電泳中,可針對質子化的衍生產物 protonated 4-(diethylamino)benzaldehyde o-methyloxime (DBMOH+) 與內標準品 N,N-dimethyl-p-toluidine (DMPT) 的相對波峰面積比製作出校正曲線,此方法則是在波長 200 nm 下進行分析,可得到在 5.0-500 mM 的線性範圍。
This thesis is divided into two parts. The first part is aimed at the investigation of immobilized metal ion affinity adsorbent for a-amylase separation and the second part is on the development and validation of analysis methods, liquid chromatography and capillary electrophoresis, for a novel chemotherapeutic enhancer, methoxyamine. b-Cyclodextrin (b-CD) and epichlorohydrin (EPI) were chosen as the matrix material and crosslinker, respectively. Thus the cross-linked b-cyclodextrin (b-CDcl) could react with iminodiacetic acid (IDA) to form b-CDcl-IDA. The immobilized metal ion adsorbent, b-CDcl-IDA-Cu2+, was prepared by chelating metal ions with the carboxylic groups from IDA. The adsorbent could adsorb 750 U/mL Bacillus licheniformis a-amylase (BLA) within 2 min. However, it took 2 hours to reach the adsorption equilibrium as the BLA activity was raised to 38,900 U/mL. A rapid and repeated BLA adsorption-desorption procedure was executed 50 times with 500 mg of adsorbent and the average recovery of 97% was achieved. In total, 93% of recovery and 46-fold concentration could thus be obtained.
The presence of PEG could facilitate a-amylase adsorption from Bacillus amyloliquefaciens a-amylase (BAA) fermentation broth. 95% of adsorption could be obtained by changing the molecular weight and the amount of PEG. Adding 200 mM NaCl to the desorption agent, imidazole, the desorption of BAA raised by 35% to more than 95%. The BAA were separated from the fermentation broths by the prepared adsorbents and the BAA recovery were higher than 80%. Esterase was used to examine the specific affinity of adsorbents for a-amylase. In the mixture of a-amylase/esterase, the adsorption of a-amylase was nearly not influenced by esterase. On the contrary, the esterase adsorption was inhibited by a-amylase.
In the second part, UV-Visible photometer, LC-MS and chemical reduction were used to discover the derivatization reaction of derivating agent, 4-(diethylamino)benzaldehyde (DEAB), with methoxyamine. The high performance liquid chromatography (HPLC) method quantitated the main derivate, 4-(diethylamino)benzaldehyde o-methoxyloxime (DBMO), at the wavelength of 310 nm. A linear calibration range of 0.10-10.0 mM was obtained. Another method is using pH 2.5 phosphate buffer as the separation buffer for capillary electrophoresis (CE). The relative peak area of protonated 4-(diethylamino)benzaldehyde o-methoxyloxime (DBMOH+) to the internal standard, N,N-dimethyl-p-toluidine (DMPT), was adopted to the calibration which had a linear range of 5.0-500 mM at the wavelength of 200 nm.
參考文獻
1. G. Muralikrishna and M. Nirmala, “Cereal a-Amylases—An Overview”, Carbohydrate Polymers, Vol. 60, pp. 163-173, 2005
2. P. Nigam and D. Singh, “Enzyme and Microbial Systems Involved in Starch Processing”, Enzyme and Microbial Technology, Vol. 17, pp. 770-778, 1995
3. P.M, Coutinho and B. Henrissat, Carbohydrate-Active Enzymes Server at URL: http://afmb.cnrs-mrs.fr/CAZY/, 1999
4. T. Kuriki and T. Imanaka, “The Concept of the a-Amylase Family: Structural Similarity and Common Catalytic Mechanism”, Journal of Bioscience and Bioengineering, Vol. 87, pp. 557-565, 1999
5. M. Vihinen and P. Mantasala, “Microbial Amylolytic Enzymes”, Critical Reviews in Biochemistry and Molecular Biology, Vol. 24, pp. 329-418, 1989
6. M.H. Rivera, A. Lopez-Munguia, X. Soberon and G. Saab-Rincon, “a-Amylase from Bacillus Licheniformis Mutants Near to the Catalytic Site: Effects on Hydrolytic and Transglycosylation Activity”, Protein Engineering, Vol. 16, pp. 505-514, 2003
7. R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami and B. Chauhan, “Microbial a-Amylases: A Biotechnoogical Perspective”, Process Biochemistry, Vol. 38, pp. 1599-1616, 2003
8. H. Leemhuis, “ The a-Amylase Family: Transglycosylation and Hydrolysis Reaction Specificity”, What Makes Cyclodextrin Glycosyltransferase a Transglycosylase, Online resource, 2003
9. M. Machius, N. Declerck, R. Huber and G, Wiegand, “Activation of Bacillus Licheniformis a-Amylase through a Disorder → Order Transition of the Substrate-binding Site Mediated by a Calcium-sodium-calcium Metal Triad”, Structure, Vol. 6, pp. 281-292, 1998
10. H. Chung and F. Friedberg, “Sequence of the N-terminal Half of Bacillus Amyloliquefaciens a-Amylase”, Biochemical Journal, Vol. 185, pp. 387-395, 1980
11. A. Bairoch, R. Apweiler, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro , E. Gasteiger, H. Huang , R. Lopez, M. Magrane , M.J. Martin, D.A. Natale, C. O'Donovan, N. Redaschi, L.S. Yeh, “The Universal Protein Resource (UniProt)”, Nucleic Acids Research, Vol. 33, pp. D154-D159, 2005
12. G. Davies and B. Henrissat, “Structures and Mechanisms of Glycosyl Hydrolases”, Structure, Vol. 3, pp. 853-859, 1995
13. J.-C. Janson and J.-A. Jonsson, “Introduction to Chromatography”, Protein Purification: Principles, High-resolution Methods, and Applications, Second Edition, Edited by J.-C. Janson and L. Ryden, John Wiley & Sons, Inc, New York, 1998
14. J. Turkova, “Bioaffinity Chromatography”, Separation Methods, Edited by Z. Deyl, Elsevier Science Publishers, Amsterdam, 1984
15. N. K. Harakas, “Biospecific Affinity Chromatography”, Protein Purification Process Engineering, Edited by R.G. Harrison, pp. 259-316, Marcel Dekker, Inc., New York, 1993
16. J. Porath, J. Carlsson, I. Olsson and G. Belfrage, “Metal Chelate Affinity Chromatography, A New Approach to Protein Fractionation” Nature, Vol. 258, pp. 18-19, 1975
17. E.S. Hemdan, Y.-J. Zhao, E. Sulkowski and J. Porath, “Surface Topography of Histidine Residues: A Facile Probe by Immobilized Metal Ion Affinity Chromatography”, Proceeding of The National Academy of Sciences of the United States of America, Vol. 86, pp. 1811-1815, 1989
18. V. Gaberc-Porekar and V. Menart, “Perspectives of Immobilized-metal Affinity Chromatography”, Journal of Biochemical and Biophysical Methods, Vol. 49, pp. 335-360, 2001
19. G. Tishchenko, B. Hodrova, J. Simunek and M. Bleha, “Nickel and Copper Complexes of a Chelating Methacrylate Sorbent in the Purification of Chitinases and Specific Immunoglobulin G1 by Immobilized Metal Ion Affinity Chromatography”, Journal of Chromatography A, Vol. 983, pp. 125-132, 2003
20. S. Emir, R. Say, H. Yavuz and A. Denizli, “A New Metal Chelate Affinity Adsorbent for Cytochrome c”, Biotechnology Progress, Vol. 20, pp. 223-228, 2004
21. G.T. Hermanson, A.K. Mallia and P.K. Smith, Immobilized Affinity Ligand Techniques, Academic Press, Inc., San Diego, 1992
22. S. Angal and P. D. G. Dean, “Purification by Exploitation of Activity”, Protein Purification Methods: A Practical Approach, Edited by E.L.V. Harris and S. Angal, IRL Press, Oxford, 1989
23. S. Roe, “Separation Based on Structure”, Protein Purification Methods: A Practical Approach, Edited by E.L.V. Harris and S. Angal, IRL Press, Oxford, 1989
24. J. Szejtli, “Introduction and General Overview of Cyclodextrin Chemistry”, Chemical Reviews, Vol. 98, pp. 1743-1753, 1998
25. J.S. Smith, R.J. MacRae and M.J. Snowden, “Effect of SBE7-b-cyclodextrin Complexation on Carbamazepine Release from Sustained Release Beads”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 60, pp. 73-80, 2005
26. N. Mesplet, P. Morin and J.-P. Ribet, “Spectrofluorimetric Study of Eflucimibe-g-cyclodextrin Inclusion Complex”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 59, pp. 523-526, 2005
27. G. Zingone and F. Rubessa, “Preformulation Study of the Inclusion Complex Warfarin-b-cyclodextrin”, International Journal of Pharmaceutics, Vol. 291, pp. 3-10, 2005
28. J.A. Thoma and D.E. Koshland Jr., “Competitive Inhibition by Substrate during Enzyme Action. Evidence for the Induced-fit Theory”, Journal of the American Chemical Society, Vol. 82, pp. 3329-3333, 1960
29. J.A. Thoma, D.E. Koshland Jr., J. Rusica and R. Baldwin, “The Number of Binding Sites of Sweet Potato Beta Amylases”, Biochemical and Biophysical Research Communication, Vol. 12, pp. 184-188, 1963
30. P. Vretblad, “Immobilization of Ligands for Biospecific Affinity Chromatography via Their Hydroxyl Groups. The Cyclohexaamylase-b-amylase System”, FEBS Letters, Vol. 47, pp. 86-89, 1974
31. A. Vikso-Nielsen and A. Belnnow, “Isolation of Starch Branching Enzyme I from Potato Using g-Cyclodextrin Affinity Chromatography”, Journal of Chromatography A, Vol. 800, pp. 382-385, 1998
32. L. Duedahl-Olesen, K.M. Kragh and W. Zimmermann, “Purification and Characterisation of a Malto-oligosaccharide-forming Amylase Active at High pH from Bacillus clausii BT-21”, Carbohydrate Research, Vol. 329, pp. 97-107, 2000
33. S. Teotia, S.K. Khare and M.N. Gupta, “An Efficient Purification Process for Sweet Potato Beta-amylase by Affinity Precipitation with Alginate”, Enzyme and Microbial Technology, Vol. 28, pp. 792-795, 2001
34. L.M. Hamilton, C.T. Kelly and W.M. Fogarty, “Review: Cyclodextrins and Their Interaction with Amylolytic Enzymes”, Enzyme and Microbial Technology, Vol. 26, pp. 561-567, 2000
35. R. Kouiekolo, V. Desseaux, Y. Moreau, G. Marchis-Mouren and M. Santimone, “Mechanism of Porcine Pancreatic a-Amylase. Inhibition of Amylose and Maltopentaose Hydrolysis by a-, b- and g-Cyclodextrins, European Journal of Biochemistry, Vol. 268, pp. 841-848, 2001
36. N. Oudjeriouat, Y. Moreau, M. Santimone, B. Svensson, G. Marchis-Mouren and V. Desseaux, “On the Mechanism of a-Amylase. Acarbose and Cyclodextrin Inhibition of Barley Amylase Isozymes”, European Journal of Biochemistry, Vol. 270, pp. 3871-3879, 2003
37. H. Rozie, W. Somers, A. Bonte, K. Riet, J. Visser and F.M. Rombouts, “Adsorption and Desorption Characteristics of Bacterial a-Amylases on Cross-Linked Potato Starch”, Biotechnology and Applied Biochemistry, Vol. 13, pp. 181-195, 1991
38. W.A.C. Somers, P.H.M. Koenen, H.J. Rozie, J. Visser, F.M. Rombouts and K. Riet, “Isolation of a-Amylase on Crosslinked Starch”, Enzyme and Microbial Technology, Vol. 17, pp. 56-62, 1995
39. M. Kurakake, Y. Tachibana, K. Masaki and T. Komaki, “Adsorption of Alpha-amylase on Heat-moisture Treated Starch”, Journal of Cereal Science, Vol. 23, pp. 163-168, 1996
40. L.-L. Lin H.-F. Lo, J.-N. Chen, K.-L. Ku and W.-H. Hsu, “Isolation of a Recombinant Bacillus sp. TS-23 a-Amylase by Adsorption-elution on Raw Starch”, Starch-starke, Vol. 54, pp. 338-342, 2002
41. G. Crini, C. Cosentino, S. Bertini, A. Naggi, G. Torri, C. Vecchi, L. Janus and M. Morcellet, “Solid State NMR Spectroscopy Study of Molecular Motion in Cyclomaltoheptaose (b-cyclodextrin) Crosslinked with Epichlorohydrin”, Carbohydrate Research, Vol. 308, pp. 37-45, 1998
42. B. M. Brena, C. Pazos, L. Franco-Fraguas and F. Batista-Viera, “Chromatographic Methods for Amylases”, Journal of Chromatography B, Vol. 684, pp. 217-237, 1996
43. G. Tishchenko, B. Hodrova, J. Simunek and M. Bleha, “Nickel and Copper Complexes of a Chelating Methacrylate Sorbent in the Purification of Chitinases and Specific Immunoglobulin G1 by Immobilized Metal Ion Affinity Chromatography”, Journal of Chromatography A, Vol. 983, pp. 125-132, 2003
44. A.S. Schmidt, A.M. Ventom and J.A. Asenjo, “Partitioning and Purification of a-Amylase in Aqueous Two-phase Systems”, Enzyme and Microbial Technology, Vol. 16, pp. 131-142, 1994
45. A.S. Schmidt, B.A. Andrews and J.A. Asenjo, “Correlations for the Partition Behavior of Proteins in Aqueous Two-phase Systems: Effect of Overall Protein Concentration”, Biotechnology and Bioengineering, Vol. 50, pp. 617-626, 1996
46. C. Mateo, G. Fernandez-Lorente, B.C.C. Pessela, A. Vian, A.V. Carrascosa, J.L. Garcia, R. fernandez-Lafuente, J.M. Guisan, “Affinity Chromatography of Polyhistidine Tagged Enzymes New Dextran-coated Immobilized Metal Ion Affinity Chromatography Matrices for Prevention of Undesired Multipoint Adsorptions”, Journal of Chromatography A, Vol. 915, pp. 97-106, 2001
47. A. Kumar, I.Y. Galaev and B. Mattiasson, “Polymer Displacement/shielding in Protein Chromatography”, Journal of Chromatography B, Vol. 741, pp. 103-113, 2000
48. N. Garg, I.Y. Galaev and B. Mattiasson, Dye-affinity Techniques for Bioprocessing: Recent Developments, Journal of Molecular Recognition, Vol. 9, pp. 259-274, 1996
49. V. Gaberc-Porekar and V. Menart, “Perspectives of Immobilized-metal Affinity Chromatography”, Journal of Biochemical and Biophysical Methods, Vol. 49, pp. 335-360, 2001
50. P. Mankikandan, B. Epel and D. Goldfarb, “ Structure of Copper (II)-histindine Based Complexes in Frozen Aqueous Solutions as Determined from High-field Pulsed Electron Nuclear Double Resonance”, Inorganic Chemistry, Vol. 40, pp. 781-787, 2001
51. L. Liu, L. Yan, J.R. Donze and S.L. Gerson, “Blockage of Abasic Site Repair Enhances Antitumor Efficacy of 1,3-Bis-(2-chloroethyl)-1-nitrosourea in Colon Tumor Xenografts”, Molecular Cancer Therapeutics, Vol. 2, pp. 1061-1066, 2003
52. L. Liu, Y. Nakatsuru and S.L. Gerson, “Base Excision Repair as a Therapeutic Target in Colon Cancer”, Clinical Cancer Research, Vol. 8, pp. 2985-2991, 2002
53. J.K. Horton, A. Baker, B.J. Vande Berg, R.W. Sobol and S.H. Wilson, “Involvement of DNA Polymerase β in Protection against the Cytotoxicity of Oxidative DNA Damage”, DNA Repair, Vol. 1, pp. 317-333, 2002
54. P. Taverna, L. Liu, H.-S. Hwang, A.J. Hanson, T.J. Kinsella and S.L. Gerson, “Methoxyamine Potentiates DNA Single Strand Breaks and Double Strand Breaks Induced by Temozolomide in Colon Cancer Cells”, Mutation Research, Vol. 485, pp. 269-281, 2001
55. P.N. Fernando, I.N. Egwu and M.S. Hussain, “Ion Chromatography Determination of Trace Hydroxylamine in Waste Streams Generated by a Pharmaceutical Reaction Process”, Journal of Chromatography A, Vol. 956, pp. 261-270, 2002
56. S.X. Peng, M.J. Strojnowski, J K. Hu, B.J. Smith, T.H. Eichhold, K.R. Wehmeyer, S. Pikul and N.G. Almstead, “Gas Chromatographic-mass Spectrometric Analysis of Hydroxylamine for Monitoring the Metabolic Hydrolysis of Metalloprotease Inhibitors in Rat and Human Liver Microsomes” Journal of Chromatography B, Vol. 724, pp. 181-187, 1999
57. T, You, M. Wu and E. Wang, “Determination of Hydroxylamine by Capillary Electrophoresis-electrochemical Detection with a Palladium-particle Modified Carbon Fiber Microdisk Array Electrode”, Analytical Letters, Vol. 30, pp. 1025-1036, 1997
58. X. Qi and R.P. Baldwin, “Liquid Chromatography/Electrochemical Detection of Hydroxylamines by Oxidation at a Cobalt Phthalocyanine Chemically Modified Electrode”, Electroanalysis, Vol. 6, pp. 353-360, 1994
59. S. Yang, L. Liu, S.L. Gerson and Y. Xu, “Measurement of Anti-cancer Agent Methoxyamine in Plasma by Tandem Mass Spectrometry with On-line Sample Extraction”. Journal of Chromatography B, Vol. 795, pp. 295-307, 2003
60. E. Wang, E. Struble, P. Liu and A.P. Cheung, “A New Sensitive HPLC Assay for Methoxyamine and Its Analogs”, Journal of Pharmaceutical and Biomedical Analysis, Vol. 30, pp. 415-427, 2002
61. S.H. Hansen, P. Helboe and U. Lund, “Adsorption and Partition Chromatography”, Separation Methods, Edited by Z. Deyl, Elsevier Science Publishers, Amsterdam, 1984
62. P. Camilleri, “History and Development of Capillary Electrophoresis”, Capillary Electrophoresisi: Theory and Practice, Edited by P. Camilleri, CRC Press, London, 1998
63. Y. Xu, “Capillary Electrophoresis in Clinical Chemistry”, Encyclopedia of Analytical Chemistry, Edited by R. A. Meyers, John Wiley & Sons Ltd., Chichester, 2000
64. P. Thibault and N.J. Dovichi, “General Instrumentation and Detection Systems Including Mass Spectrometric Interfaces”, Capillary Electrophoresisi: Theory and Practice, Edited by P. Camilleri, CRC Press, London, 1998
65. S.J. Gaskell, “ Electrospray: Principles and Practice”, Journal of Mass Spectrometry, Vo. 32, pp. 677-688, 1997
66. P. Kebarle, “A Brief Overview of the Present Status of the Mechanism Involved in Electrospray Mass Spectrometry”, Journal of Mass Spectrometry, Vol. 35, pp. 804-817, 2000
67. D.A. Skoog and J.J. Leary, Principles of Instrumental Analysis, Saunders College Publishing, New York, pp. 420-461, 1992
68. T. Fukushima, N. Usui, T. Santa and K. Imai, “Recent Progress in Derivatization Methods for LC and CE Analysis”, Journal of Pharmaceutical and Biomedical Analysis, Vol. 30, pp. 1655-1687, 2003
69. H.A. Bardelmeijer, H. Lingeman, C. Ruiter and W.J.M. Underberg, “Derivatization in Capillary Electrophoresis”, Journal of Chromatography A, pp. 3-26, 1998