| 研究生: |
沈柏村 Shen, Po-Tsun |
|---|---|
| 論文名稱: |
標的蛋白質體學用於蛋白質N端以及組織蛋白修飾之廣泛性及定量比較 Targeted Proteomics for Protein N-termini and Histone Modifications – Global and Quantitative Comparisons |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 二甲基標定 、蛋白質N端 、組織蛋白 、海拉細胞 、乙醯化 、甲基化 、缺氧誘導因子-1 、a1離子 、標的蛋白質體學 |
| 外文關鍵詞: | dimethyl labeling, protein N-termini, histone, HeLa cell, acetylation, methylation, HIF-1, a1 ion, targeted proteomics |
| 相關次數: | 點閱:254 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,以質譜為主的蛋白質體學成長快速並且應用到許多研究領域上。 為了得到在細胞、組織、尿液、血液內的蛋白質定性以及定量的資訊,許多分析策略建立來探索蛋白質體世界,例如同位素親和性標定法,結合了親和性純化方法,來建立分析蛋白質體的一部分,針對只含有半胱胺酸的胜肽進行分析,達到同時定性以及定量蛋白質;結合分段對角層析法,利用胜肽其親、疏水性不同,階段性純化出蛋白質N端,如果使用同位素氘的乙醯化試劑,可以達到同時定性以及定量蛋白質。 為了分析特定蛋白質體的一部分或是針對單一蛋白質進行分析的策略,稱為標的蛋白質體學。
第一個研究主題 (第二章): 二甲基標定的胜肽經由碰撞誘導解離會產生增強的a1離子,而這a1離子可以用來確認蛋白質或胜肽的N端胺基酸。 在此方法中,在蛋白質層次利用同位素氘的甲醛(d2)試劑對未具修飾蛋白質N端以及離胺基酸進行標定,接著進行胰蛋白酶酵素水解。 水解後所生成內部胜肽的自由胺基再與具有醛基的固體支撐物進行還原胺化反應而被抓取。 剩下的部分即是含有二甲基修飾或是在人體內已有修飾的N端胜肽,接著經由液相層析質譜儀進行序列分析。 由於二甲基修飾的胜肽其a1離子的訊號增強且搭配使用氘試劑,可以使得二甲基修飾與人體內已有修飾的N端蛋白質有所區別。 因此,序列以及N端修飾可以藉由二次質譜圖清楚地標示出來。
第二個研究主題 (第三章): 缺氧引發的基因調控會透過組織蛋白的轉譯後修飾變化,而使得染色質重組。 在本研究中,我們利用高準確度質譜來研究組織蛋白的轉譯後修飾,並且定量在缺氧情況下轉譯後修飾的變化。 再者,為了區分轉譯後修飾的變化是否被缺氧誘導因子-1所調控,我們進行在三種生物狀態下(野生型,缺氧誘導因子-1擊低,缺氧誘導因子-1過度表現)海拉細胞的分析。 由於已知組織蛋白H3與缺氧所引發的基因活化或抑制有關,所以我們利用胜肽找出蛋白質的質譜分析策略來詳細地研究由一維膠所純化的組織蛋白H3的甲基化以及乙醯化。
第三個研究主題 (第四章): 穩定二甲基同位素標定對於定量蛋白質體學來說是一個簡單、負擔得起、價格低廉的方法。 二甲基同位素標定的胜肽具有獨特且增強的a1離子,對於全新序列鑑定以及序列驗證很有幫助。 我們建立了一個網站,使用穩定二甲基同位素標定方法應用於蛋白質定量。 透過二甲基同位素標定胜肽的a1離子其理論與實驗值的比較,軟體會驗證序列的正確性,不符合的胜肽會被移除,不列入蛋白質定量。 再者,軟體會利用統計自動由多維液相層析蛋白質鑑定技術所找出的大量蛋白質數據找出沒有變化的蛋白質。 因此,與沒有變化的蛋白質相比,就可以決定出有意義上升或下降變化的蛋白質。
In recent years, MS-based proteomics has been much grown and applied to many research fields. In order to get the information of quality and quantity of proteins contained in the cells, tissues, urine, blood and so on, many analytical strategies have been developed to explore proteomic world such as isotope coded affinity tag (ICAT), which coupled with affinity purification, set up to analyze protein subsets, targeted only cysteine-containing peptides, reached protein identity and quantitation at the same time; COFRADIC (Combined Fractional Diagonal Chromatography), which coupled with stepwise purification, designed to analyze protein subsets, targeted protein N-terminal peptides, achieved protein identity and quantitation if deuterium form acetylation reagent was used. Strategies that were set up to analyze specific protein subsets or single protein were considered to be targeted proteomics.
In the first topic (Chapter 2): Enhanced a1 ion signals were detected upon collision-induced dissociation of dimethyl labeled peptides, can be used to identify the N-termini of proteins or peptides. Dimethyl labeling at the protein level was first performed using formaldehyde-d2 to label all unblocked protein N-termini and lysine residues, followed by trypsin digestion. The free N-terminal amines of internal peptides generated by digestion were captured by solid supports with aldehyde functionalities through reductive amination. The flowthrough fractions, which contained either in vivo or in vitro blocked N-terminal peptides, were subjected to sequence analyses by LC-MS/MS. Owing to the unique feature of a1 signal enhancement associated with dimethylated peptides and the use of the deuterium reagent, the in vitro blocked (or in vivo free) N-termini of proteins could be easily differentiated from the in vivo blocked N-termini.
In the second topic (Chapter 3): Hypoxia induced changes in gene regulation are often a result of changes in chromatin organization which is mediated by variable post-translational modifications of histone proteins. In this study, we report on a high accuracy mass spectrometry-based technique to characterize the global post-translational modifications of histone H3, the most extensively modified histone protein, and to quantify the change of its modification level during hypoxia. Moreover, in order to differentiate whether the hypoxia-induced change is mediated by hypoxia-inducible factor 1 (HIF-1), we conducted the analyses on HeLa cells under three different biological states, wild type, HIF-1 knockdown, and HIF-1 over-expression. We focused on using bottom-up MS approach in detailed characterizations of methylation and acetylation on histone H3 purified from the gel since they are known to correlate with gene activation/repression induced by hypoxia.
In the third topic (Chapter 4): Stable isotope dimethyl labeling is a simple, affordable and popular method for quantitative proteomics. The unique a1 ion enhancement associated with dimethylated peptides is very useful for de-novo sequencing and sequence validation. A validated web server specifically designed for protein quantification using stable isotope dimethyl labeling (PQ-SIDL) is presented. The software validates the sequence identity by matching the experimental and theoretical mass of the dimethylated a1 ion and excludes the un-matched peptides for protein quantification. Moreover, the software automatically deduces a panel of control proteins based on statistics from a combined search result of a large scale data generated from multidimensional protein identification technology (MudPIT). Thus, whether a protein is significantly up- or down- regulated can be determined and annotated in the result output based on statistical ratio comparison with the control.
Literature cited in Chapter 1
1. Steen, H.; Mann, M., The ABC's (and XYZ's) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 2004, 5 (9), 699-711.
2. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
3. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60 (20), 2299-301.
4. Hillenkamp, F.; Karas, M., Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol. 1990, 193, 280-95.
5. Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20 (18), 3551-67.
6. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976-89.
7. Xu, H.; Freitas, M. A., MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 2009, 9 (6), 1548-55.
8. Geer, L. Y.; Markey, S. P.; Kowalak, J. A.; Wagner, L.; Xu, M.; Maynard, D. M.; Yang, X.; Shi, W.; Bryant, S. H., Open mass spectrometry search algorithm. J. Proteome Res. 2004, 3 (5), 958-64.
9. Zhang, W.; Chait, B. T., ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 2000, 72 (11), 2482-9.
10. Chalkley, R. J.; Baker, P. R.; Huang, L.; Hansen, K. C.; Allen, N. P.; Rexach, M.; Burlingame, A. L., Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Mol. Cell Proteomics 2005, 4 (8), 1194-204.
11. Craig, R.; Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20 (9), 1466-7.
12. Tanner, S.; Shu, H.; Frank, A.; Wang, L. C.; Zandi, E.; Mumby, M.; Pevzner, P. A.; Bafna, V., InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal. Chem. 2005, 77 (14), 4626-39.
13. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (11), 5011-5.
14. Henzel, W. J.; Watanabe, C.; Stults, J. T., Protein identification: the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 2003, 14 (9), 931-42.
15. James, P.; Quadroni, M.; Carafoli, E.; Gonnet, G., Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 1993, 195 (1), 58-64.
16. Yates, J. R., 3rd; Eng, J. K.; McCormack, A. L.; Schieltz, D., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 1995, 67 (8), 1426-36.
17. Dass, C., Principles and practice of biological mass spectrometry. Wiley-Interscience 2000.
18. Roepstorff, P.; Fohlman, J., Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 1984, 11 (11), 601.
19. Wiesner, J.; Premsler, T.; Sickmann, A., Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 2008, 8 (21), 4466-83.
20. Mikesh, L. M.; Ueberheide, B.; Chi, A.; Coon, J. J.; Syka, J. E.; Shabanowitz, J.; Hunt, D. F., The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta. 2006, 1764 (12), 1811-22.
21. Nakazawa, T.; Yamaguchi, M.; Okamura, T. A.; Ando, E.; Nishimura, O.; Tsunasawa, S., Terminal proteomics: N- and C-terminal analyses for high-fidelity identification of proteins using MS. Proteomics 2008, 8 (4), 673-85.
22. Frottin, F.; Martinez, A.; Peynot, P.; Mitra, S.; Holz, R. C.; Giglione, C.; Meinnel, T., The proteomics of N-terminal methionine cleavage. Mol. Cell Proteomics 2006, 5 (12), 2336-49.
23. Polevoda, B.; Sherman, F., Nalpha -terminal acetylation of eukaryotic proteins. J. Biol. Chem. 2000, 275 (47), 36479-82.
24. Hoglund, A.; Donnes, P.; Blum, T.; Adolph, H. W.; Kohlbacher, O., MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006, 22 (10), 1158-65.
25. Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300 (4), 1005-16.
26. Gevaert, K.; Goethals, M.; Martens, L.; Van Damme, J.; Staes, A.; Thomas, G. R.; Vandekerckhove, J., Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 2003, 21 (5), 566-9.
27. Jensen, O. N., Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 2006, 7 (6), 391-403.
28. Strahl, B. D.; Allis, C. D., The language of covalent histone modifications. Nature 2000, 403 (6765), 41-5.
29. Ueberheide, B. M.; Mollah, S., Deciphering the histone code using mass spectrometry. INT. J. MASS SPECTROM. 2007, 259, 46-56.
30. Zhang, L.; Eugeni, E. E.; Parthun, M. R.; Freitas, M. A., Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003, 112 (2), 77-86.
31. Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S. C.; Falck, J. R.; Peng, J.; Gu, W.; Zhao, Y., Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteomics 2007, 6 (5), 812-9.
32. Peng, J.; Schwartz, D.; Elias, J. E.; Thoreen, C. C.; Cheng, D.; Marsischky, G.; Roelofs, J.; Finley, D.; Gygi, S. P., A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21 (8), 921-6.
33. Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd, An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 2001, 73 (23), 5683-90.
34. Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007, 389 (4), 1017-31.
35. Yan, W.; Chen, S. S., Mass spectrometry-based quantitative proteomic profiling. Brief Funct. Genomic Proteomic 2005, 4 (1), 27-38.
36. Conrads, T. P.; Alving, K.; Veenstra, T. D.; Belov, M. E.; Anderson, G. A.; Anderson, D. J.; Lipton, M. S.; Pasa-Tolic, L.; Udseth, H. R.; Chrisler, W. B.; Thrall, B. D.; Smith, R. D., Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem. 2001, 73 (9), 2132-9.
37. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 2002, 1 (5), 376-86.
38. Everley, P. A.; Krijgsveld, J.; Zetter, B. R.; Gygi, S. P., Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell Proteomics 2004, 3 (7), 729-35.
39. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 2004, 3 (12), 1154-69.
40. Zhang, X.; Jin, Q. K.; Carr, S. A.; Annan, R. S., N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom. 2002, 16 (24), 2325-32.
41. Thompson, A.; Schafer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A. K.; Hamon, C., Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003, 75 (8), 1895-904.
42. Schmidt, A.; Kellermann, J.; Lottspeich, F., A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 2005, 5 (1), 4-15.
43. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75 (24), 6843-52.
44. Goodlett, D. R.; Keller, A.; Watts, J. D.; Newitt, R.; Yi, E. C.; Purvine, S.; Eng, J. K.; von Haller, P.; Aebersold, R.; Kolker, E., Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom. 2001, 15 (14), 1214-21.
45. Syka, J. E.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F., Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 2004, 3 (3), 621-6.
46. Mirgorodskaya, O. A.; Kozmin, Y. P.; Titov, M. I.; Korner, R.; Sonksen, C. P.; Roepstorff, P., Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun. Mass Spectrom. 2000, 14 (14), 1226-32.
47. Wang, Y. K.; Ma, Z.; Quinn, D. F.; Fu, E. W., Inverse 18O labeling mass spectrometry for the rapid identification of marker/target proteins. Anal. Chem. 2001, 73 (15), 3742-50.
48. Stewart, II; Thomson, T.; Figeys, D., 18O labeling: a tool for proteomics. Rapid Commun. Mass Spectrom. 2001, 15 (24), 2456-65.
49. Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C., Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 2001, 73 (13), 2836-42.
50. Cagney, G.; Emili, A., De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol. 2002, 20 (2), 163-70.
51. Brancia, F. L.; Openshaw, M. E.; Kumashiro, S., Investigation of the electrospray response of lysine-, arginine-, and homoarginine-terminal peptide mixtures by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2002, 16 (24), 2255-9.
52. Brancia, F. L.; Montgomery, H.; Tanaka, K.; Kumashiro, S., Guanidino labeling derivatization strategy for global characterization of peptide mixtures by liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2004, 76 (10), 2748-55.
53. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17 (10), 994-9.
54. Hsu, J. L.; Huang, S. Y.; Shiea, J. T.; Huang, W. Y.; Chen, S. H., Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4 (1), 101-8.
55. Hsu, J. L.; Chen, S. H.; Li, D. T.; Shi, F. K., Enhanced a1 fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J. Proteome Res. 2007, 6 (6), 2376-83.
56. Hsu, J. L.; Huang, S. Y.; Chen, S. H., Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 2006, 27 (18), 3652-60.
57. Boersema, P. J.; Aye, T. T.; van Veen, T. A.; Heck, A. J.; Mohammed, S., Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8 (22), 4624-32.
Literature cited in Chapter 2
1. Meinnel, T.; Mechulam, Y.; Blanquet, S., Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie. 1993, 75 (12), 1061-75.
2. Bradshaw, R. A.; Brickey, W. W.; Walker, K. W., N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem. Sci. 1998, 23 (7), 263-7.
3. Polevoda, B.; Sherman, F., Nalpha -terminal acetylation of eukaryotic proteins. J. Biol. Chem. 2000, 275 (47), 36479-82.
4. Bachmair, A.; Finley, D.; Varshavsky, A., In vivo half-life of a protein is a function of its amino-terminal residue. Science 1986, 234 (4773), 179-86.
5. Varshavsky, A., The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. U. S. A. 1996, 93 (22), 12142-9.
6. McDonald, L.; Robertson, D. H.; Hurst, J. L.; Beynon, R. J., Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nat. Methods 2005, 2 (12), 955-7.
7. Gevaert, K.; Goethals, M.; Martens, L.; Van Damme, J.; Staes, A.; Thomas, G. R.; Vandekerckhove, J., Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 2003, 21 (5), 566-9.
8. Yamaguchi, M.; Nakazawa, T.; Kuyama, H.; Obama, T.; Ando, E.; Okamura, T. A.; Ueyama, N.; Norioka, S., High-throughput method for N-terminal sequencing of proteins by MALDI mass spectrometry. Anal. Chem. 2005, 77 (2), 645-51.
9. Guillaume, E.; Panchaud, A.; Affolter, M.; Desvergnes, V.; Kussmann, M., Differentially isotope-coded N-terminal protein sulphonation: combining protein identification and quantification. Proteomics 2006, 6 (8), 2338-49.
10. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75 (24), 6843-52.
11. Hsu, J. L.; Huang, S. Y.; Shiea, J. T.; Huang, W. Y.; Chen, S. H., Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4 (1), 101-8.
12. Ji, C.; Li, L.; Gebre, M.; Pasdar, M.; Li, L., Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. J. Proteome Res. 2005, 4 (4), 1419-26.
13. Melanson, J. E.; Avery, S. L.; Pinto, D. M., High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 2006, 6 (16), 4466-74.
14. Huang, S. Y.; Tsai, M. L.; Wu, C. J.; Hsu, J. L.; Ho, S. H.; Chen, S. H., Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 2006, 6 (6), 1722-34.
15. Hsu, J. L.; Chen, S. H.; Li, D. T.; Shi, F. K., Enhanced a1 fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J. Proteome Res. 2007, 6 (6), 2376-83.
Literature cited in Chapter 3
1. Malik, H. S.; Henikoff, S., Phylogenomics of the nucleosome. Nat. Struct. Biol. 2003, 10 (11), 882-91.
2. Luger, K.; Mader, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J., Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389 (6648), 251-60.
3. Robinson, P. J.; Rhodes, D., Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Curr. Opin. Struct. Biol. 2006, 16 (3), 336-43.
4. Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S. C.; Falck, J. R.; Peng, J.; Gu, W.; Zhao, Y., Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteomics 2007, 6 (5), 812-9.
5. Zhang, K.; Chen, Y.; Zhang, Z.; Zhao, Y., Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J. Proteome Res. 2009, 8 (2), 900-6.
6. Strahl, B. D.; Allis, C. D., The language of covalent histone modifications. Nature 2000, 403 (6765), 41-5.
7. Jenuwein, T.; Allis, C. D., Translating the histone code. Science 2001, 293 (5532), 1074-80.
8. Thorne, A. W.; Kmiciek, D.; Mitchelson, K.; Sautiere, P.; Crane-Robinson, C., Patterns of histone acetylation. Eur. J. Biochem. 1990, 193 (3), 701-13.
9. Suka, N.; Suka, Y.; Carmen, A. A.; Wu, J.; Grunstein, M., Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 2001, 8 (2), 473-9.
10. Ueberheide, B. M.; Mollah, S., Deciphering the histone code using mass spectrometry. INT. J. MASS SPECTROM. 2007, 259, 46-56.
11. Kimura, A.; Horikoshi, M., Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 1998, 3 (12), 789-800.
12. Zhang, L.; Eugeni, E. E.; Parthun, M. R.; Freitas, M. A., Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003, 112 (2), 77-86.
13. Zhang, K.; Williams, K. E.; Huang, L.; Yau, P.; Siino, J. S.; Bradbury, E. M.; Jones, P. R.; Minch, M. J.; Burlingame, A. L., Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol. Cell Proteomics 2002, 1 (7), 500-8.
14. Mann, M.; Kelleher, N. L., Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (47), 18132-8.
15. Garcia, B. A.; Mollah, S.; Ueberheide, B. M.; Busby, S. A.; Muratore, T. L.; Shabanowitz, J.; Hunt, D. F., Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2007, 2 (4), 933-8.
16. Syka, J. E.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F., Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 2004, 3 (3), 621-6.
17. Plazas-Mayorca, M. D.; Zee, B. M.; Young, N. L.; Fingerman, I. M.; LeRoy, G.; Briggs, S. D.; Garcia, B. A., One-pot shotgun quantitative mass spectrometry characterization of histones. J. Proteome Res. 2009, 8 (11), 5367-74.
18. Thomas, C. E.; Kelleher, N. L.; Mizzen, C. A., Mass spectrometric characterization of human histone H3: a bird's eye view. J. Proteome Res. 2006, 5 (2), 240-7.
19. Siuti, N.; Kelleher, N. L., Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4 (10), 817-21.
20. Siuti, N.; Kelleher, N. L., Efficient readout of posttranslational codes on the 50-residue tail of histone H3 by high-resolution MS/MS. Anal. Biochem. 2010, 396 (2), 180-7.
21. Johnson, A. B.; Barton, M. C., Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat. Res. 2007, 618 (1-2), 149-62.
22. Wang, G. L.; Jiang, B. H.; Rue, E. A.; Semenza, G. L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (12), 5510-4.
23. Ke, Q.; Costa, M., Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70 (5), 1469-80.
24. Semenza, G., Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 2002, 64 (5-6), 993-8.
25. Richard, D. E.; Berra, E.; Pouyssegur, J., Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J. Biol. Chem. 2000, 275 (35), 26765-71.
26. Johnson, A. B.; Denko, N.; Barton, M. C., Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat. Res. 2008, 640 (1-2), 174-9.
27. Su, X.; Jacob, N. K.; Amunugama, R.; Lucas, D. M.; Knapp, A. R.; Ren, C.; Davis, M. E.; Marcucci, G.; Parthun, M. R.; Byrd, J. C.; Fishel, R.; Freitas, M. A., Liquid chromatography mass spectrometry profiling of histones. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 850 (1-2), 440-54.
28. Loyola, A.; Almouzni, G., Marking histone H3 variants: how, when and why? Trends Biochem. Sci. 2007, 32 (9), 425-33.
29. Sereda, T. J.; Mant, C. T.; Quinn, A. M.; Hodges, R. S., Effect of the alpha-amino group on peptide retention behaviour in reversed-phase chromatography. Determination of the pK(a) values of the alpha-amino group of 19 different N-terminal amino acid residues. J. Chromatogr. 1993, 646 (1), 17-30.
30. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75 (24), 6843-52.
31. Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009, 4 (4), 484-94.
32. Zappacosta, F.; Annan, R. S., N-terminal isotope tagging strategy for quantitative proteomics: results-driven analysis of protein abundance changes. Anal. Chem. 2004, 76 (22), 6618-27.
33. Zhang, R.; Sioma, C. S.; Thompson, R. A.; Xiong, L.; Regnier, F. E., Controlling deuterium isotope effects in comparative proteomics. Anal. Chem. 2002, 74 (15), 3662-9.
34. Guo, K.; Ji, C.; Li, L., Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal. Chem. 2007, 79 (22), 8631-8.
35. Zhu, W.; Smith, J. W.; Huang, C. M., Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol. 2010, 2010, 840518.
36. Wellmann, S.; Bettkober, M.; Zelmer, A.; Seeger, K.; Faigle, M.; Eltzschig, H. K.; Buhrer, C., Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem. Biophys. Res. Commun. 2008, 372 (4), 892-7.
37. Beyer, S.; Kristensen, M. M.; Jensen, K. S.; Johansen, J. V.; Staller, P., The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem. 2008, 283 (52), 36542-52.
38. Yang, J.; Ledaki, I.; Turley, H.; Gatter, K. C.; Montero, J. C.; Li, J. L.; Harris, A. L., Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann. N. Y. Acad. Sci. 2009, 1177, 185-97.
Literature cited in Chapter 4
1. Iliuk, A.; Galan, J.; Tao, W. A., Playing tag with quantitative proteomics. Anal. Bioanal. Chem. 2009, 393 (2), 503-13.
2. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 2002, 1 (5), 376-86.
3. Everley, P. A.; Krijgsveld, J.; Zetter, B. R.; Gygi, S. P., Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell Proteomics 2004, 3 (7), 729-35.
4. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17 (10), 994-9.
5. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 2004, 3 (12), 1154-69.
6. Schulze, W. X.; Mann, M., A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 2004, 279 (11), 10756-64.
7. Yu, C. Y.; Tsui, Y. H.; Yian, Y. H.; Sung, T. Y.; Hsu, W. L., The Multi-Q web server for multiplexed protein quantitation. Nucleic Acids Res. 2007, 35 (Web Server issue), W707-12.
8. Jones, A. R.; Siepen, J. A.; Hubbard, S. J.; Paton, N. W., Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics 2009, 9 (5), 1220-9.
9. Goloborodko, A. A.; Mayerhofer, C.; Zubarev, A. R.; Tarasova, I. A.; Gorshkov, A. V.; Zubarev, R. A.; Gorshkov, M. V., Empirical approach to false discovery rate estimation in shotgun proteomics. Rapid Commun. Mass Spectrom. 2010, 24 (4), 454-62.
10. Lam, H.; Deutsch, E. W.; Aebersold, R., Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics. J. Proteome Res. 2010, 9 (1), 605-10.
11. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75 (24), 6843-52.
12. Hsu, J. L.; Huang, S. Y.; Chen, S. H., Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 2006, 27 (18), 3652-60.
13. Hsu, J. L.; Huang, S. Y.; Shiea, J. T.; Huang, W. Y.; Chen, S. H., Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4 (1), 101-8.
14. Huang, S. Y.; Wen, C. H.; Li, D. T.; Hsu, J. L.; Chen, C.; Shi, F. K.; Lin, Y. Y., Assignment of disulfide-linked peptides using automatic a1 ion recognition. Anal. Chem. 2008, 80 (23), 9135-40.
15. Shen, P. T.; Hsu, J. L.; Chen, S. H., Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Anal. Chem. 2007, 79 (24), 9520-30.
16. Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd, An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 2001, 73 (23), 5683-90.
17. Deroo, B. J.; Korach, K. S., Estrogen receptors and human disease. J. Clin. Invest. 2006, 116 (3), 561-70.
18. Ahmad, S.; Singh, N.; Glazer, R. I., Role of AKT1 in 17beta-estradiol- and insulin-like growth factor I (IGF-I)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem. Pharmacol. 1999, 58 (3), 425-30.
19. Dupont, J.; Le Roith, D., Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects. Mol. Pathol. 2001, 54 (3), 149-54.
20. Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20 (18), 3551-67.
21. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976-89.
22. Zhu, Z.; Boobis, A. R.; Edwards, R. J., Identification of estrogen-responsive proteins in MCF-7 human breast cancer cells using label-free quantitative proteomics. Proteomics 2008, 8 (10), 1987-2005.
校內:2020-01-01公開