簡易檢索 / 詳目顯示

研究生: 王卿昧
Wang, Ching-Mei
論文名稱: 以溶液燃燒合成法製備TiO2及其在光觸媒與染料敏化太陽能電池之應用
Solution combustion synthesis of TiO2 nanoparticles and their applications in photocatalyst and dye-sensitized solar cell
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: TiO2粉體光觸媒染料敏化太陽能電池燃料/氧化劑比例
外文關鍵詞: Titanium dioxide, photocatalysts, dye-sensitized solar cell, fuel-to-oxidizer ratios
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以胺基乙酸、尿素、硫脲等化合物當燃料(還原劑),硝酸氧鈦為氧化劑使用溶液燃燒合成法製備TiO2粉體,探討TiO2粉體與薄膜特性與其在光觸媒及染料敏化太陽能電池之應用。改變燃料/氧化劑之比例,分析燃燒反應之機制與所合成之TiO2特性。本研究發現燃料/氧化劑比例將決定最高燃燒反應溫度,進而影響合成的TiO2之比表面積、結晶晶粒大小以及其anatase結晶相之含量。合成之TiO2含有含碳物,結晶結構為純antase相或是antase-rutile之混相。
    TiO2之光觸媒光降解活性,與比表面積、結晶晶粒尺寸、antase相之含量與可見光-紅外光之吸收能力,有一定程度之相關性。結晶結構為混相且rutile相之含量<25%之TiO2,比結構為純anatase相之TiO2,有較佳的光觸媒光降解能力;然而,當rutile相含量>25%之TiO2,有較差之光觸媒光降解特性。本研究所合成之TiO2相較於商業化之Degussa P25 TiO2有較好的光觸媒光降解能力,其原因是因為含碳物種以及表面吸附之大量氫氧基。
    本研究合成之TiO2應用在染料敏化太陽能電池之光電極時,因為其含碳或是硫之雜質,使其半導體能隙降低,展現可吸收可見光之良好特性。本研究所合成之TiO2擁有接近的開環電壓與填充因子,且對光電轉換效率只有些微影響。光電轉換效率不只與短路電流有特定關係,而且主要由短路電流決定,而當結晶顆粒較大時,因為光散射效應,會有較佳的短路電流;當有較多雜質將導致電流傳輸阻力增大,使短路電流降低。另外,粉體之比表面積也是影響短路電流與光電轉換效率之重要因素。

    Titanium dioxide (TiO2) has demonstrated several potential applications, including photocatalysts, dye-sensitized solar cell (DSSC), pigment, and electronic data storage memory, etc. In this thesis, TiO2 powders were synthesized by a solution combustion synthesis method in which glycine, urea and thiourea were used as the fuel and titanyl nitrate was used as the oxidizer. Various fuel-to-oxidizer ratios were studied for their effects on the combustion phenomena and the properties of the synthesized TiO2. The fuel-to-oxidizer ratio was found to determine the maximum combustion temperature, which in turn affects the specific surface area, crystallite size, and weight fraction of anatase phase of the synthesized TiO2. The synthesized TiO2 all contain carbonaceous species and are either pure anatase or anatase–rutile mixed phase in crystalline structure.
    The photocatalytic activity of the TiO2 was found to correlate to a certain degree with the specific surface area, crystallitesize, weight fraction of anatase phase, and visible and IR absorbances. The mixed phase TiO2 shows a higher photocatalytic activity than the pure anatase phase TiO2 when containing a small fraction (<~25 wt%) of rutile phase but a lower phoyocatalytic activity when containing a large fraction (>~25 wt%) of rutile phase. The synthesized TiO2 all show higher photocatalytic activity than Degussa P25 TiO2. The enhanced photocatalytic activity was attributed mainly to sensitization by the carbonaceous species and larger amounts of hydroxyl group adsorbed on the TiO2 surface.
    These TiO2 nano powders were used to fabricate photoelectrodes for the DSSC and their performance was compared to that of the DSSC fabricated with Degussa P25 TiO2. The results showed that the TiO2 could work well as photoelectrode for DSSC. The solution combustion synthesis TiO2 contained impurities of C and/or S, thus exhibiting visible light absorption and reduced band gap. The open circuit voltage and the fill factor both varied little among the various TiO2 and thus both had little effect on the photoelectrical conversion efficiency (η). However, the variation of η was seen to be in quite a good agreement with that of the short circuit current (Isc), suggesting that η was dominated by Isc. Isc was found to be enhanced by light scattering effect due to the presence of large particles but reduced by high impurity content due to an increase in electron transfer resistance. In addition, the specific surface area of the powders was found to be an important factor affecting the Isc and thus the η.

    第1章 緒論 1 1-1 前言 1 1-2 研究動機 3 第2章 文獻回顧 5 2-1 二氧化鈦(TiO2)簡介 5 2-1.1 TiO2性質 5 2-1.2 TiO2之應用 8 2-1.3 TiO2之合成方法 12 2-1.4 TiO2之改質方法 17 2-1.5 可見光光觸媒 20 2-2 燃燒合成法 23 第3章 研究方法 26 3-1 實驗材料 26 3-1.1 合成TiO2粉體之材料 26 3-1.2 光觸媒分解之材料 26 3-1.3 組裝燃料敏化電池之材料 26 3-2 實驗流程 29 3-2.1 TiO2合成 30 3-2.2 光觸媒分解 31 3-2.3 DSSC組裝與量測 32 3-3 分析與鑑定 33 3-3.1 掃描式電子顯微鏡 33 3-3.2 穿透式電子顯微鏡 33 3-3.3 X光繞射分析儀 34 3-3.4 紫外/可見/近紅外分光光譜儀 36 3-3.5 物理吸附分析儀 36 3-3.6 測溫系統 36 3-3.7 紅外線光譜法 37 3-3.8 X光光電子能譜儀 37 第4章 結果與討論 39 4-1 燃燒特性 39 4-2 比表面積分析(BET) 45 4-3 XRD分析 47 4-4 結構分析 53 4-5 化學結構分析 55 4-6 紫外光-可見光光譜分析 62 4-7 紅外光吸收光譜 65 4-8 擴散式反射光譜 66 4-9 光觸媒之光降解分析 67 4-10 染料敏化太陽能電池應用 75 第5章 結論 80 第6章 參考文獻 82

    1. H. Tang, H. Berger, P. E. Schmid, F. Levy and G. Burri, Photoluminescence in TiO2 anatase single-crystals, Solid State Commun. 87,9, 847-850 (1993).
    2. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, Electrical and optical-properties of TiO2 anatase thin-films, Journal of Applied Physics 75,4, 2042-2047 (1994).
    3. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238,5358, 37-38 (1972).
    4. A. Fujishima, K. Kohayakawa and K. Honda, Hydrogen production under sunlight with an electrochemical photocell, J. Electrochem. Soc. 122,11, 1487-1489 (1975).
    5. M. Dusi, C. A. Muller, T. Mallat and A. Baiker, Novel amine-modified TiO2-SiO2 aerogel for the demanding epoxidation of substituted cyclohexenols, Chem. Commun.,2, 197-198 (1999).
    6. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results, Chem. Rev. 95,3, 735-758 (1995).
    7. A. Wold, Photocatalytic properties of TiO2, Chem. Mat. 5,3, 280-283 (1993).
    8. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 127,48, 16835-16847 (2005).
    9. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293,5528, 269-271 (2001).
    10. R. Alexandrescu, M. Scarisoreanu, I. Morjan, R. Birjega, C. Fleaca, C. Luculescu, I. Soare, O. Cretu, C. C. Negrila, N. Lazarescu and V. Ciupina, Preparation and characterization of nitrogen-doped TiO2 nanoparticles by the laser pyrolysis of N2O-containing gas mixtures, Appl. Surf. Sci. 255,10, 5373-5377 (2009).
    11. Y. Z. Li, D. S. Hwang, N. H. Lee and S. J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett. 404,1-3, 25-29 (2005).
    12. Y. J. Chen, J. M. Wu, C. S. Lin, G. Y. Jhan, M. S. Wong, S. C. Ke and H. H. Lo, Role of carbon in titania as visible-light photocatalyst prepared by flat-flame chemical vapor condensation method, J. Vac. Sci. Technol. A 27,4, 862-866 (2009).
    13. A. G. Agrios, K. A. Gray and E. Weitz, Narrow-band irradiation of a homologous series of chlorophenols on TiO2: Charge-transfer complex formation and reactivity, Langmuir 20,14, 5911-5917 (2004).
    14. G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh and K. A. Gray, The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites, J. Am. Chem. Soc. 130,16, 5402 (2008).
    15. B. Oregan and M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature 353,6346, 737-740 (1991).
    16. M. Gratzel, Photoelectrochemical cells, Nature 414,6861, 338-344 (2001).
    17. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture, J. Am. Chem. Soc. 130,12, 4007-4015 (2008).
    18. J. H. Park, S. Kim and A. J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6,1, 24-28 (2006).
    19. Z. Y. Liu, D. D. L. Sun, P. Guo and J. O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett. 7,4, 1081-1085 (2007).
    20. N. N. Rao and S. Dube, Photoelectrochemical generation of hydrogen using organic pollutants in water as sacrificial electron donors, Int. J. Hydrog. Energy 21,2, 95-98 (1996).
    21. C. R. Robbins, E. M. Levin, H. F. McMurdie and M. K. Reser, Phase diagrams for Ceramists. American Ceramic Society, Columbus, Ohio, 1964.
    22. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson and J. V. Smith, Structural electronic relationships in inorganic solids - powder neutron-diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295-k, J. Am. Chem. Soc. 109,12, 3639-3646 (1987).
    23. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48,5-8, 53-229 (2003).
    24. Powder Diffraction File, Card No.21-1272. JCPDS-International Centre for Diffraction Data, Swarthmore, 1997.
    25. T. E. Weirich, M. Winterer, S. Seifried, H. Hahn and H. Fuess, Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2, Ultramicroscopy 81,3-4, 263-270 (2000).
    26. Powder Diffraction File, Card No.21-1276. JCPDS-International Centre for Diffraction Data, Swarthmore, 1997.
    27. J. Muscat, N. M. Harrison and G. Thornton, First-principles study of potassium adsorption on TiO2 surfaces, Phys. Rev. B 59,23, 15457-15463 (1999).
    28. Y. Nosaka and M. A. Fox, Kinetics for electron-transfer from laser-pulse-irradiated colloidal semiconductors to adsorbed methylviologen - dependence of the quantum yield on incident pulse width, J. Phys. Chem. 92,7, 1893-1897 (1988).
    29. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14,12, 3160-3163 (1998).
    30. B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mat. 9,11, 2544-2550 (1997).
    31. W. J. Dawson, Hydrothermal synthesis of advanced ceramic powders, Am. Ceram. Soc. Bull. 67,10, 1673-1678 (1988).
    32. H. Yoshitake, T. Sugihara and T. Tatsumi, Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition, Chem. Mat. 14,3, 1023-1029 (2002).
    33. P. Lobl, M. Huppertz and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films 251,1, 72-79 (1994).
    34. H. K. Pulker, G. Paesold and E. Ritter, Refractive-indexes of TiO2 films produced by reactive evaporation of various titanium-oxygen phases, Appl. Optics 15,12, 2986-2991 (1976).
    35. D. G. Wiesler, M. F. Toney, O. R. Melroy, C. S. McMillan and W. H. Smyrl, X-ray-diffraction from anodic TiO2 films - in-situ and ex-situ comparison of the Ti(0001) face, Surf. Sci. 302,3, 341-349 (1994).
    36. J. Aarik, A. Aidla, H. Mandar and T. Uustare, Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism, Appl. Surf. Sci. 172,1-2, 148-158 (2001).
    37. H. E. Cheng and C. C. Chen, Morphological and photoelectrochemical properties of ALD TiO2 films, J. Electrochem. Soc. 155,9, D604-D607 (2008).
    38. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95,1, 69-96 (1995).
    39. 卡田博史 and 朱旭山, 光觸媒圖解. 商周出版, 2003年.
    40. J. Wang, S. Uma and K. J. Klabunde, Visible light photocatalysis in transition metal incorporated titania-silica aerogels, Appl. Catal. B-Environ. 48,2, 151-154 (2004).
    41. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol. A-Chem. 148,1-3, 257-261 (2002).
    42. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81,3, 454-456 (2002).
    43. O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck and J. T. Yates, The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals, J. Phys. Chem. B 108,1, 52-57 (2004).
    44. T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist and S. E. Lindquist, Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B 107,24, 5709-5716 (2003).
    45. J. M. Mwabora, T. Lindgren, E. Avendano, T. F. Jaramillo, J. Lu, S. E. Lindquist and C. G. Granqvist, Structure, composition, and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive DC magnetron sputtering, J. Phys. Chem. B 108,52, 20193-20198 (2004).
    46. G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist and S. E. Lindquist, Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B 108,19, 5995-6003 (2004).
    47. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk and W. F. Maier, Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Appl. Catal. B-Environ. 32,4, 215-227 (2001).
    48. T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda and M. Inagaki, Composites between photoactive anatase-type TiO2 and adsorptive carbon, Appl. Surf. Sci. 196,1-4, 429-436 (2002).
    49. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna and G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity, Langmuir 20,7, 2900-2907 (2004).
    50. H. K. Sander, High-tech Ceramics. C&E News, 1984.
    51. J. F. Crider, Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials, Ceram. Eng. Sci.Proc. 3,9-10, 519 (1982).
    52. Z. A. Munir and U. Anselmi-Tamburini, Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Ceram. Bull. 67,2, 342-349 (1988).
    53. Z. A. Munir, J. B. Holt and A.G.Merzhanov, "Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings", In Combustion and Plasma Synthesis of High-Temperature Materials. VCH, New York,USA, 1990.
    54. J. C. Kuang, C. R. Zhang, X. G. Zhou and S. Q. Wang, Synthesis of high thermal conductivity nano-scale aluminum nitride by a new carbothermal reduction method from combustion precursor, J. Cryst. Growth 256,3-4, 288-291 (2003).
    55. K. C. Patil, S. T. Aruna and T. Mimani, Combustion synthesis: an update, Curr. Opin. Solid State Mat. Sci. 6,6, 507-512 (2002).
    56. B. D. Cullity, Elements of X-ray diffraction. Addison-Wesley Pub. Co., Reading, Mass., 1978.
    57. R. Debnath and J. Chaudhuri, Inhibiting effect of AlPO4 and SiO2 on the anatase - rutile transformation reaction - an X-ray and Laser Raman-study, J. Mater. Res. 7,12, 3348-3351 (1992).
    58. C. R. Hubbard, E. H. Evans and D. K. Smith, The reference intensity ratio, I/Ic, for computer simulated powder patterns, J. Appl. Cryst. 9,2, 169 (1976).
    59. J. N. Nian, S. A. Chen, C. C. Tsai and H. S. Teng, Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes, Journal of Physical Chemistry B 110,51, 25817-25824 (2006).
    60. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze and G. C. Stangle, A combustion synthesis process for synthesizing nanocrystalline zirconia powders, J. Mater. Res. 10,3, 748-755 (1995).
    61. R. D. Shannon and J. A. Pask, Kinetics of the Anatase-Rutile Transformation, J. Am. Chem. Soc. 48,8, 391-398 (1965).
    62. C. Y. Kuo, S. Y. Lien, Z. S. Wu, F. S. Shieu and C. F. Chen, Fabrication and Characterization of NP-TiO2 Thin Films for High Efficiency Dye-Sensitized Solar Cell Application, Nanosci. Nanotechnol. Lett. 3,2, 195-199 (2011).
    63. H. E. Wang, Z. H. Chen, Y. H. Leung, C. Y. Luan, C. P. Liu, Y. B. Tang, C. Yan, W. J. Zhang, J. A. Zapien, I. Bello and S. T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates, Appl. Phys. Lett. 96,26, 263104 (2010).
    64. L. Q. Dong, K. Cheng, W. J. Weng, C. L. Song, P. Y. Du, G. Shen and G. R. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates, Thin Solid Films 519,15, 4634-4640 (2011).
    65. S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and L. Palmisano, Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water, J. Am. Chem. Soc. 130,5, 1568 (2008).
    66. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir 17,9, 2664-2669 (2001).
    67. J. M. Macak, A. Ghicov, R. Hahn, H. Tsuchiya and P. Schmuki, Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses, J. Mater. Res. 21,11, 2824-2828 (2006).
    68. C. Battocchio, G. Iucci, M. Dettin, S. Monti, V. Carravetta and G. Polzonetti, XPS investigation on the structure of two dipeptides studied as models of self-assembling oligopeptides: comparison between experiments and theory J. Phys.: Conf. Ser. 100, 052079 (2008).
    69. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A-Gen. 265,1, 115-121 (2004).
    70. H. Onishi, T. Aruga, C. Egawa and Y. Iwasawa, Adsorption of CH3OH, HCOOH and SO2 on TiO2(110) and stepped TiO2(441) surfaces, Surf. Sci. 193,1-2, 33-46 (1988).
    71. D. I. Sayago, P. Serrano, O. Bohme, A. Goldoni, G. Paolucci, E. Roman and J. A. Martin-Gago, Adsorption and desorption of SO2 on the TiO2(110)-(1X1) surface: A photoemission study, Phys. Rev. B 64,20, 205402 (2001).
    72. D. Gonbeau, C. Guimon, G. Pfisterguillouzo, A. Levasseur, G. Meunier and R. Dormoy, XPS study of thin-films of titanium oxysulfides, Surf. Sci. 254,1-3, 81-89 (1991).
    73. E. L. D. Hebenstreit, W. Hebenstreit, H. Geisler, S. N. Thornburg, C. A. Ventrice, D. A. Hite, P. T. Sprunger and U. Diebold, Sulfur on TiO2(110) studied with resonant photoemission, Phys. Rev. B 64,11, 115418 (2001).
    74. Y. Huang, W. K. Ho, S. C. Lee, L. Z. Zhang, G. S. Li and J. C. Yu, Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx, Langmuir 24,7, 3510-3516 (2008).
    75. A. Deshpande, G. Madras and N. M. Gupta, Role of lattice defects and crystallite morphology in the UV and visible-light-induced photo-catalytic properties of combustion-prepared TiO2, Mater. Chem. Phys. 126,3, 546-554 (2011).
    76. G. Sivalingam, K. Nagaveni, M. S. Hegde and G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Appl. Catal. B-Environ. 45,1, 23-38 (2003).
    77. S. L. Chung and C. M. Wang, A sol-gel combustion synthesis method for TiO2 powders with enhanced photocatalytic activity, J. Sol-Gel Sci. Technol. 57,1, 76-85 (2011).
    78. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, 1979.
    79. D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang and D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res. 46,9, 2741-2746 (2007).
    80. Y. Xie, X. Zhao, Y. Chen, Q. Zhao and Q. Yuan, Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity, J. Solid State Chem. 180,12, 3576-3582 (2007).
    81. C. S. Gopinath, S. G. Hegde, A. V. Ramaswamy and S. Mahapatra, Photoernission studies of polymorphic CaCO3 materials, Mater. Res. Bull. 37,7, 1323-1332 (2002).
    82. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo and M. Umeno, Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films, J. Phys. Chem. Solids 60,2, 201-210 (1999).
    83. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu and W. K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B 107,50, 13871-13879 (2003).
    84. S. Sakthivel and H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem.-Int. Edit. 42,40, 4908-4911 (2003).
    85. D. Dvoranova, V. Brezova, M. Mazur and M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B-Environ. 37,2, 91-105 (2002).
    86. J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon and J. S. Lee, Formation of crystalline TiO2-xNx and its photocatalytic activity, J. Solid State Chem. 179,4, 1067-1075 (2006).
    87. S. Mozia, M. Tomaszewska, B. Kosowska, B. Grzmil, A. W. Morawski and K. Kalucki, Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation, Appl. Catal. B-Environ. 55,3, 195-200 (2005).
    88. S. Agarwala, M. Kevin, A. S. W. Wong, C. K. N. Peh, V. Thavasi and G. W. Ho, Mesophase Ordering of TiO2 Film with High Surface Area and strong Light Harvesting for Dye-Sensitized Solar Cell, ACS Appl. Mater. Interfaces 2,7, 1844-1850 (2010).
    89. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B-Environ. 31,2, 145-157 (2001).
    90. S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297,5590, 2243-2245 (2002).
    91. R. I. Bickley, T. Gonzalezcarreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, A structural investigation of Titanium-dioxide photocatalysis, J. Solid State Chem. 92,1, 178-190 (1991).
    92. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B 107,19, 4545-4549 (2003).
    93. L. Zhao, M. Han and H. Lian, Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition, Thin Solid Films 516,10, 3394-3398 (2008).
    94. Q. Z. Yan, X. T. Su, Z. Y. Huang and C. C. Ge, Sol-gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders, J. European Ceram. Soc. 26,6, 915-921 (2006).
    95. K. Nagaveni, G. Sivalingam, M. S. Hedge and G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal. B-Environ. 48,2, 83-93 (2004).
    96. Y. P. Cheng, H. Q. Sun, W. Q. Jin and N. P. Xu, Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation, Chem. Eng. J. 128,2-3, 127-133 (2007).
    97. J. G. Yu, X. J. Zhao and Q. N. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films 379,1-2, 7-14 (2000).
    98. S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks and M. Gratzel, Self-organization of TiO2 nanoparticles in thin films, Chem. Mat. 10,9, 2419-2425 (1998).

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE