簡易檢索 / 詳目顯示

研究生: 翁奕軒
Weng, Yi-Hsuan
論文名稱: 應用資訊理論於建構同時監控製程平均數及製程變異數之管制圖
An information-theoretical based process control chart for monitoring process mean and variance
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 80
中文關鍵詞: Kullback-Leibler distance管制圖指數加權移動平均管制圖累計和管制圖一般概似比管制圖資訊準則
外文關鍵詞: Kullback-Leibler distance, control chart, CUMSUM, EWMA, generalized likelihood ratio control chart
相關次數: 點閱:204下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術日新月異,為了減少外部及內部的失敗成本,品質管理的概念因此逐漸受到重視,品質管理相關理論在這幾十年來逐漸發展成熟。其中統計製程管制(Statistical Process Control, SPC)是一套好用的工具,主要是透過蒐集資料,透過統計分析的方法,對生產過程做即時的監控。管制圖是其中被廣泛應用的工具之ㄧ,傳統的修華特管制圖(Shewhart control chart)適合用在製程一開始時,主要是用來偵測製程過程中有明顯原因的製程變異,將製程帶入穩定狀態,並得到製程中的製程平均數與製程變異數。移除明顯原因的製程變異進入穩定階段後,進行小範圍位移的監測,常用的方法是累積和管制圖(cumulative sum control chart, CUSUM control chart)、指數加權移動平均管制圖(exponentially weighted moving average control chart, EWMA control chart),CUSUM、EWMA可以針對特定位移去進行參數最佳化的設定,小範圍位移時有不錯的監測效果,但缺點為當實際位移不接 近特定位移時,其監測效果不佳。本研究利用Kullback-Leibler distance(K-L distance)以及最大概似法的概念建構不需要事先設定參數且可以同時監測製程平均數與變異數的管制圖,稱為Information-Theoretical Based Process Control Chart,簡稱為 管制圖,監測能力使用期望警示時間(average time to signal, ATS)當作績效指標。根據模擬結果分析可知在小範圍位移有不錯監測效果,在大範圍位移時監測效果不輸給其他管制圖,整體來說 是一個易於使用且有不錯監測效果的管制圖。

    The objective of this study is to construct a new type of control chart based on Kullback-Leibler distance of information theory. We name this control chart Information-Theoretical Based Process Control Chart (IPC( , ) control chart). This study considers detecting the mean shift, variance shift and both shift of a normally distributed process. We use a statistic which is a derivation of Kullback-Leibler distance to construct the IPC( , ) control chart. The control limits of the control chart are obtained by simulation with 100,000 runs when in-control average time to signal is 1481. Using the control limits acquired above, we get the out of control average time to signal for various shift sizes and three shift types. The performance of control charts are measured by average time to signal in this study. The results of IPC( , ) control chart are compared with cumulative sum combination(CUSUM combination), and generalized likelihood ratio (GLR) control chart. The IPC( , ) control chart is effective in detecting shift of small sizes, but less effective in detecting shift of large sizes. The results are close to the CUSUM combination and GLR control charts. It is shown that the overall performance of IPC( , ) control chart is good. An advantage of IPC( , ) control chart is that it does not require users to specify control chart parameters while CUSUM combination control chart have to for detecting a specific mean and variance shift faster.

    目錄 摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 4 第四節 模型假設 4 第五節 研究流程 4 第二章 文獻探討 6 第一節 修華管制圖(Shewhart Control chart) 6 2.1.1 Shewhart Control Chart分類 8 2.1.2 Shewhart Control Chart基本模型 9 第二節 Time-Weighted Control Chart 10 2.2.1 Cumulative sum control chart 10 2.2.2 EWMA Control Chart 11 第三節 Change-Point Model 11 第四節 GLR管制圖 12 第五節 ELR管制圖 15 第六節 CUSUM combination管制圖 16 第七節 Kullback-Leibler distance資訊理論 17 2.7.1 K-L distance之加成性質 18 第八節 管制圖監測能力績效指標 19 第九節 AIC資訊準則 20 第十節 小結 21 第三章 研究方法與步驟 23 第一節 研究假設與參數設定 23 第二節 研究流程建構 25 第三節 管制圖建構 27 3.3.1 τ*的計算與選定 27 3.3.2 K-L distance的計算 31 3.3.3 管制界限I(α,n)的設定 34 第四節 變異類型 35 3.4.1 AIC資訊準則法(Akaike Information Criterion) 35 第五節 小結 36 第四章 結果分析與案例討論 37 第一節 管制圖參數設定 37 第二節 管制圖比較與結果分析 43 4.2.1 製程平均數與製程變異數皆變動 43 4.2.2 製程變異數固定,製程平均數變動 50 4.2.3 製程平均數固定,製程變異數變動 56 4.2.4 變異種類判別:製程平均數與製程變異數皆變動 62 4.2.5 變異種類判別:製程變異數固定,製程平均數變動 64 4.2.6 變異種類判別:製程平均數固定,製程變異數變動 66 第三節 案例討論 68 第五章 結論與未來研究方向 72 第一節 本研究結論 72 第二節 未來研究方向 73 參考文獻 74 附錄I 77 附錄II 78 附錄III 79 表目錄 表格 1 管制界限 39 表格 2 IPC、GLR、CUSUM combination管制圖比較 46 表格 3 IPC、GLR、CUSUM combination在變異數固定比較 52 表格 4 IPC、GLR、CUSUM combination在平均數固定下比較 58 表格 5 IPC管制圖在平均數與變異數皆變動下之之比較 63 表格 6 IPC管制圖在變異數固定下之比較 65 表格 7 IPC管制圖在平均數固定下之比較 67 表格 8 Case 1 IPC管制圖計算過程(k=10) 68 表格 9 IPC管制圖結果(k=10) 69 圖目錄 圖 1 管制圖建構流程圖 26 圖 2 管制圖建構流程圖(代入相關參數設定) 42 圖 3 IPC與GLR管制圖比較 47 圖 4 IPC與GLR管制圖大範圍位移下比較 47 圖 5 IPC與CUSUM combination管制圖比較 48 圖 6 IPC與CUSUM combination管制圖大範圍位移下比較 48 圖 7 平均數與變異數皆變動下的pw值比較 49 圖 8 IPC與GLR管制圖比較 53 圖 9 IPC與GLR管制圖大範圍位移下比較 53 圖 10 IPC與CUSUM combination管制圖比較 54 圖 11 IPC與CUSUM combination管制圖大範圍位移下比較 54 圖 12 變異數固定下的pw值比較 55 圖 13 IPC與GLR管制圖比較 59 圖 14 IPC與GLR管制圖大範圍位移下比較 59 圖 15 IPC與CUSUM combination管制圖比較 60 圖 16 IPC與CUSUM combination管制圖大範圍位移下比較 60 圖 17 平均數固定下的pw值比較 61 圖 18 IPC of Data1 71 圖 19 GLR control chart of Data1 71

    中文文獻:
    李庭媁,應用資訊理論於管制圖之建構,國立成功大學工業與資訊管理研究所碩士論文,民國一百零三年六月。
    英文文獻:
    Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory. Academiai Kiado.
    Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
    Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3-14.
    Alwan, L. C., Ebrahimi, N., & Soofi, E. S. (1998). Information theoretic framework for process control. European Journal of Operational Research, 111(3), 526-542.
    Dragalin, V. (1997). The design and analysis of 2-CUSUM procedure. Communications in Statistics-Simulation and Computation, 26(1), 67-81.
    Hawkins, D. M., Peihua, Q., & Chang, W. K. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355-366.
    Hawkins, D. M., & Zamba, K. D. (2005). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2), 164-173.
    Hawkins, D. M., & Zamba, K. D. (2005). A change-point model for a shift in variance. Journal of Quality Technology, 37(1), 21-31.
    Kanagawa A., Arizono, I. & Ohta H. (1997). Design of the control chart based on Kullback-Leibler information. Frontiers in Statistical Quality Control, 5, 183-192.
    Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86.
    Kullback, S. (1978). Information Theory and Statistics. New York: Dover Publications.
    Kupperman, M. (1956). Further applications of information theory to multivariate analysis and statistical inference. Annals of Mathematical Statistics, 27(4), 1184-1184.
    Lucas, J. M. (1982). Combined Shewhart-CUSUM quality control schemes. Journal of Quality Technology, 14(2), 51-59.
    Montgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction, 6th ed., New Jersey: Jonh Wiley & Sons.
    Page, E. S. (1954). Continuous inspection schemes. Biometrics, 41(1), 100-115.
    Reynolds, M. R., Jr., & Lou, J. (2010). An evaluation of a GLR control chart for monitoring the process mean. Journal of Quality Technology, 42(3), 287-310.
    Reynolds, M. R., Jr., Lou, J., Lee, J., & Wang, S. (2013). The design of GLR control chart for monitoring the process mean and variance. Journal of Quality Technology, 45(1), 34-60.
    Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97-102.
    Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
    Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product, 509. Milwaukee: ASQ Quality Press.
    Siegmund, D., & Venkatraman, E. S. (1995). Using the generalized likelihood ratio statistic for sequential detection of a change-point. The Annals of Statistics, 23(2), 255-271.
    Sparks, R. S. (2000). CUSUM charts for signalling varying location shifts. Journal of Quality Technology, 32(2), 157-171.
    Takemoto, Y., Arizono, I., & Satoh, T. (2013). Discrimination of out-of-control condition using AIC in control chart. Industrial Engineeering & Management Systems, 12(2), 112-117.
    Watakabe, K., & Arizono, I. (1999). The power of the (x̄, s) control chart based on the log‐likelihood ratio statistic. Naval Research Logistics, 46(8), 928-951.
    Zhao, Y., Tsung, F., & Wang, Z. (2005). Dual CUSUM control schemes for detecting a range of mean shifts. IIE Transactions, 37(11), 1047-1057.
    Zhang, J., Zou, C., & Wang, Z. (2010). A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International, 26(1), 63-73.

    下載圖示 校內:2020-08-21公開
    校外:2020-08-21公開
    QR CODE