簡易檢索 / 詳目顯示

研究生: 黃俊智
Huang, Chun-Chih
論文名稱: 三維界面角之熱應力強度因子
Stress Intensity Factors of Three-Dimensional Interface Corners Induced by Thermal Stresses
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 應力強度因子異向性彈性力學史磋公式H積分破壞力學
外文關鍵詞: Stress intensity factor, Anisotropic Elasticity, Stroh Formalism, H integral, Fracture Mechanics
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今生活中由於複合材料的出現,由不同材料製成的許多物件在工程上的破壞行為變得越來越被關心。H積分已被證實是在線彈性力學的假設下,用來計算混合破壞模式應力強度因子的一個有效工具。為了能夠計算在三維模型下,經歷溫度變化以及機械負載情況下的應力強度因子,本文使用了一經過修正的H積分。這個修正過後的H積分較原先在二維問題中的H積分多了兩個面積分項:其一和某些應力和位移出平面方向的微分相關,另一則和溫度變化相關。其中後者由於其相關之輔助應變場會產生奇異問題,所以在文中有特殊處理。此外,有鑑於之前在計算應力強度因子時,僅考慮奇異性最大的應力奇異階次可能會有漏失某些破壞模式的情況發生,又為了能夠反應出裂縫或尖角尖端在彈性力學假設下的真實應力強度,所以本文在計算應力強度因子時會將三個應力奇異階次同時考慮,這主要也是為了配合一個在最近才被提出的新的應力強度因子的定義式,此定義式有著將應力強度因子單位統一化、方便比較的特性。最後提出幾個數值例子,如裂縫、尖角經歷溫度變化或經歷熱流通過等問題,來演示本文中提出的計算方法。

    Due to the appearance of composite materials, the fracture behavior of objects made of a variety of materials is more and more concerned. It's been verified that H-integral is a very efficient tool for the calculation of stress intensity factor. To calculate the stress intensity factor of a three dimensional model, under the thermal and mechanical loading, a modified H-integral is proposed in this paper. The modified integral contains two extra domain integrals: one relates to the derivative of some stress and displacement components along the out-of-plane direction, and the other relates to the temperature field. Since the latter possesses the singular auxiliary strain field which may disturb the value of integration near the corner or crack tip, the domain integral should be modified with special treatment in the thesis. Furthermore, to consider the true intensity of stress near the corner or crack tip under the assumption of linear elasticity, and also the loss of fracture modes that might be neglected when only the most critical singular order of stress is considered, the first three critical singular orders of stress will be taken into consideration at the same time. This is mainly for introducing a new definition of stress intensity factor, which has the advantage of unifying the units of stress intensity factors, and makes stress intensity factors comparable. A few numerical examples are shown, e.g. crack/corner under a mixed loading, or applied with a heat flow, to carry out the validity of the approach proposed.

    摘要... i Abstract... iii 誌謝... v 目錄... vi 表目錄... viii 圖目錄... x 使用符號... xii 第一章 緒論... 1 1.1 研究動機... 1 1.2 文獻回顧... 1 第二章 界面角之近尖端場解... 5 2.1 熱應力分析... 5 2.2 近尖端場解... 9 2.3 重根問題... 10 第三章 應力強度因子... 13 3.1 定義式... 13 3.2 重根問題... 15 第四章 H積分... 17 4.1 定義式... 17 4.2 三維熱效應問題... 18 4.3 奇異積分... 22 4.4 移動式最小平方法... 26 第五章 數值範例... 28 第六章 結論... 38 參考文獻... 40

    Bank-Sills, L., & Ishbir, C. (2004). A conservative integral for bimaterial notches subjected to thermal stresses. International Journal for Numerical Methods in Engineering 60 (6) , pp. 1075-1102.

    Broek, D. (1974). Elementary Engineering Fracture Mechanics. Leyden: Noordhoff Internation Publication.

    Choi, N., & Earmme, Y. (1992). Evaluation of stress intensity factors in a circular arc-shaped interfacial crack using L-integral. Mechanics of Materials , pp. 141-153.

    Erdogan, F. (1965). Stress distribution in bonded dissimilar materials with cracks. Journal of Applied Mechanics 32 , pp. 403-410.

    Hwu, C. (2010). Anisotropic Elastic Plates. New York: Springer.

    Hwu, C. (1990). Thermal Stresses in an anisotropic plate disturbed by an insulated elliptic hole or crack. Journal of Applied Mechanics (57) , pp. 916-922.

    Hwu, C., & Huang, H. (2011). Matrix Form Near Tip Solution of Interface Corners, submitted for publication.

    Hwu, C., & Kuo, T. (2007). A unified definition for stress intensity factor of interface corners and cracks. International Journal of Solids and Structures (44) , pp. 6340-6459.

    Hwu, C., & Lee, W. (2004). Thermal Effect on the Singular Behavior of Multi-Bonded Anisotropic Wedges. Journal of Thermal Stresses 27 (2) , pp. 111-136.

    Hwu, C., Kuo, T., & Huang, C. (2011). Fracture Analyses For Interface Corners In Elastic Materials. Key Engineering Materials (pp. 277-283). Trans Tech Publications.

    Hwu, C., Omiya, M., & Kishimoto, K. (2003). A Key Matrix N for the Stress Singularity of the Anisotropic Elastic Composite Wedges. JSME International Jornal Series A46 (1) , pp. 40-50.

    Im, S., & Kim, K. (2000). An application of two-state M-integral for computing the intensity of the singular near-tip field for a generic wedge. Journal of the Mechanics and Physics , pp. 192-151.

    Kuo, T., & Hwu, C. (2010). Multi-order stress intensity factors along three-dimensional interface corners. ASME Journal of Applied Mechanics 77 .

    Lancaster, P., & Salkauskas, K. (1981). Surface generated by moving least squares method. Mathematics of Computation 37 (155) , pp. 141-158.

    Nomura, Y., Ikeda, T., & Miyazaki, N. (2010). Stress Intensity Factor Analysis of a Three-dimensional Interface Corner between Anisotropic Bimaterial uner Thermal Stress. International Journal of Solids and Structures (47) , pp. 1775-1784.

    Nowacki, W. (1962). Thermoelasticity. MA: Addison-Wesley.

    Rice, J. (1988). Elastic Fracture Mechanics Concepts for Interfacial Cracks. ASME Journal of Applied Mechanics (55) , pp. 98-103.

    Rice, J. R. (1968). A path independent integral snd the approximate analysis of strain cincentration by notches and cracks. ASME Journal of Applied Mechanics 35 , pp. 555-575.

    Sokolnikoff, I. (1956). Mathematical Theory of Elasticity, 2nd ed. New York: MacGraw Hill.

    Sumi, N., & Katayama, T. (1980). Thermal stress singularities at tips of Griffith crack in a finite rectangular plate. Nuclear Engineering and Design 60 , pp. 389-394.

    Ting, C. T. (1996). Anisotropic Elasticity: Theory and Application. New York: Oxford Science Publications.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE