簡易檢索 / 詳目顯示

研究生: 王廷暉
Wang, Ting-Hui
論文名稱: 錫鋅銲錫合金之電致富鋅相溶解與過飽和現象
The Dissolution and Supersaturation of Zn in the Sn9Zn Solder induced by Electric Current Stressing
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 第二相溶解過飽和電遷移錫鋅合金
外文關鍵詞: dissolution, supersaturation, electromigraiotn, current stressing, Sn9Zn
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係觀察錫鋅銲錫合金薄帶於通電狀態下之富鋅相微結構變化,首先以臨場X光繞射分析各電流密度通電下(2000~8000A/cm2)之富鋅相的晶格變化,於各電流密度下積分強度皆先急遽上升而後下降,在電流密度高於6000A/cm2時,積分強度下降最為嚴重,下降至0,晶格遭受嚴重破壞,而通電瞬間Zn(002)的應變量即超過0.2%,應變值在電流密度8000A/cm2甚至高達0.5%,表示電子風擾動晶格結構之能量非常大,使通電中之晶格承受高應變,以TEM分析計算,發現鋅晶粒內部的差排密度會高達1018m-2,高於傳統金屬在冷加工後的差排密度二到三個數量級,顯示大量電子風重擊使得晶面被嚴重扭曲並且產生大量差排。而後以造成晶格嚴重變化之電流密度(8000A/cm2)施予薄帶通電,觀察通電後之富鋅相的微結構變化,其中明顯發現有富鋅相溶解之行為,本研究歸類為三種機制:晶界溶解機制(Grain boundary dissolution)、異向性溶解機制(Anisotropic dissolution)、六方表面溶解機制(Hexagonal surface dissolution),此三種機制都與晶界、次晶粒晶界有關,晶界處有大量差排存在,此處的原子排列相對於晶粒內部較不規則,能量相對較高,原子容易移動,故孔洞首先會在晶界處成核,而三種機制之行為差異可能是受於本身晶粒取向或晶粒間取相所影響。通電使富鋅相溶解進入錫基地相中,通電初期各區域鋅濃度增加但差異不大,持續通電後陽極端除了此區富鋅相溶解外,也有從陰極端電遷移之通量,而使鋅濃度高於陰極端,電流導致富鋅相溶解,使錫基地相呈現鋅過飽和現象,鋅之濃度可達4~5wt%。

    This present study investigated the microstructure variation of Zn-rich phase induced by electric current stressing. The in-situ XRD (X-ray Diffraction) investigation was performed to analyze the variation of lattice structure under the current stressing. The intensity of the diffraction peak of Zn (002) increased initially and then decreased gradually. It revealed that the lattices were destructed severely. It was also noticed that the diffraction peak shifts towards lower angle, which can be attributed to the formation of dislocation and thus strain induced by current stressing. The dissolution behavior was further investigated with SEM (Scanning Electron Microscope) and FIB (Focus Ion Beam) of the specimen quenched with liquid nitrogen after current stressing. This study concluded three mechanisms of dissolution: grain boundary dissolution, anisotropic dissolution, and hexagonal surface dissolution. All of the dissolution mechanisms were related to the grain or phase boundary, but the three mechanisms may be different due to the orientation of grains themselves or influences by neighboring grains. The Sn-Zn phase diagram indicates that Sn and Zn exhibit nearly zero mutual solubility. However, Zn was found to exhibit certain solubility in the Sn matrix of Sn9Zn solder under current stressing within 6000~8000A/cm2. The Zn concentration increases from 2.2 wt% of as-received specimen to 3~8 wt% after current stressing. This study provides a good understanding to the dissolution of second phase of solder alloy under current stressing.

    中文摘要 I Extended Abstract II 誌謝 X 總目錄 XI 表目錄 XIII 圖目錄 XIV 1-1 電遷移 1 1-1-1 電遷移理論 1 1-2 電遷移效應對二元銲錫合金微結構之影響 2 1-2-1 電遷移導致二元銲錫合金之相分離行為 2 1-2-2 電遷移導致二元銲錫合金之晶粒取向變化 10 1-2-3 電遷移對二元銲錫合金之晶格影響 13 1-2-4 電遷移導致二元銲錫合金中第二相溶解與過飽和之行為 18 1-3 研究目的 22 第貳章 實驗方法與步驟 23 2-1 實驗構想 23 2-2 Sn-9wt%Zn合金銲錫薄帶試片 23 2-2-1臨場通電實驗 23 2-2-2 微結構觀察 27 2-2-3 成份分析 27 第參章 結果與討論 28 3-1 未通電之錫鋅銲錫薄帶表面微結構與晶體結構觀察 28 3-2 通電中富鋅相之晶體結構變化 28 3-2-1不同電流密度下Zn(002)結晶面之繞射峰積分強度變化 28 3-2-2電致富鋅相晶格膨脹之臨界電流密度與應變量的探討 35 3-3通電中錫鋅銲錫薄帶之微結構觀察 37 3-3-1 電致富鋅相溶解機制-晶界溶解機制(Grain boundary dissolution) 39 3-3-2 電致富鋅相溶解機制-異向性溶解機制(Anisotropic dissolution) 39 3-3-3 電致富鋅相溶解機制-六方表面溶解機制(Hexagonal surface dissolution) 42 3-3-4 富鋅相晶體結構之TEM分析 50 3-3-5 電致晶粒結晶方向變化探討 59 3-4 電致錫基地相之鋅溶解度與過飽和現象 71 3-4-1不同電流密度下電致錫基地相之鋅過飽和現象 71 第肆章 結論 75 第伍章 實驗建議 76 參考文獻 77 表3-1 金屬晶體內部在各狀態下之差排密度。 58 表3-2 通電前與施以電流密度8000A/cm2經14小時通電後之錫基地相與富鋅相所占面積比例與改變值。 67 表3-3 施以不同電流密度6000、7000、8000A/cm2一小時並以液態氮快速冷卻後,EDX分析之陰極與陽極的錫基地相之鋅濃度。 72 圖1-1 電子封裝技術之尺寸在近年與未來推估示意圖[1]。 3 圖1-2 140℃下共晶錫鋅銲錫合金在電流密度1"×" 105A/cm2通電240小時後之微結構[5]。 4 圖1-3 在電流密度2.25"×" 104A/cm2與溫度125℃下,不同通電時間之孔洞演變發展。(a)通電38小時,(b)通電40小時,(c)通電43小時,(d)通電中之電位變化,在通電43小時後電位急遽上升,表示電流聚集[8]。 5 圖1-4 共晶錫鉛銲錫合金接點以電流密度5"×" 103A/cm2通電82小時後之相分離行為,(a)通電前,(b)通電後[14]。 7 圖1-5 共晶錫鉍銲錫合金接點以電流密度2.3"×" 104A/cm2通電98小時後之相分離行為,(a)通電前,錫鉍均勻分佈於銲錫合金中,(b)通電後,陽極累積富鉍相,陰極累積富錫相[15]。 8 圖1-6 共晶錫銦銲錫合金以電流密度2.6"×" 104 A/cm2通電72小時後之相分離行為,(a)通電前,錫銦均勻分佈於銲錫合金中,(b)通電後,陽極累積富錫相,陰極累積富銦相,(c)陽極端局部放大之影像,(d)陰極端局部放大之影像[16]。 9 圖1-7 在環境溫度150℃下以電流密度5"×" 103A/cm2通電時,95Pb–5Sn /63Sn–37Pb覆晶接合銲錫隆點內之鉛晶粒將受電遷移效應使得原本為任意取向之晶粒逐漸轉變為(101)晶面為主[17]。 11 圖1-8 電遷移效應導致純錫晶粒旋轉。(a)電遷移效應導致晶粒旋轉之機制示意圖,(b)通電30小時下之晶粒表面,(c)通電500小時下之晶粒表面[18]。 12 圖1-9 晶格狀態所對應之繞射峰形狀變化。(a)晶格狀態,(b)對應晶格狀態之繞射峰形狀[21]。 14 圖1-10 Sn-9wt%Zn銲錫薄帶在通電中之繞射峰積分強度與通電時間關係圖。(a)基地相Sn(200),(b)第二相Zn(002),(c)通電後晶粒分裂為次晶粒示意圖[22]。 15 圖1-11 Sn-9wt%Zn薄帶試片於電流密度1.0×104A/cm2通電106小時並以液態氮冷卻後之不同時間的繞射峰積分強度,虛線內四點分別為從液態氮取出後之9、55、105分鐘與4個月[22]。 16 圖1-12 銅線在通電中之晶格變化。(a) ~(f)TEM觀察下,Cu(111)結晶面之原子逐漸消失,(b)Cu(111)繞射峰值下降[23]。 17 圖1-13 95Pb5Sn銲錫合金內之富錫相於通電中逐漸溶解[25]。 19 圖1-14 95Pb5Sn銲錫合金於不同電流密度之通電狀況下,鉛基地相中的錫濃度[25]。 20 圖1-15 Sn-1Cu銲錫合金內之第二相Cu6Sn5於通電中逐漸異相性溶解。(a)通電前,(b)通電79小時,(c)通電120小時,(d)通電152小時[26]。 21 圖2-1 實驗流程圖。 24 圖2-2 Sn-9wt%Zn合金銲錫薄帶。(a)試片外觀,(b)焊接完成之試片。 25 圖2-3 各通電條件狀態下以熱電偶量測試片表面溫度之示意圖。 26 圖3-1 Sn-9wt%Zn合金銲錫薄帶經熱時效處理後試片之微結構。 (a)電子顯微鏡500倍之影像,(b) 電子顯微鏡5000倍之影像。 29 圖3-2 Sn-9wt%Zn合金銲錫薄帶經熱時效處理後試片之X光繞射分析光譜圖。(a)全光譜圖,(b)縱軸尺規放大後之光譜圖。 30 圖3-4 Sn-9wt%Zn合金銲錫薄帶在不同電流密度下連續通電一小時之臨場(in situ) X光繞射分析於不同時間下Zn(002)繞射峰之局部掃描結果。 (a) 2000 A/cm2,(b)4000 A/cm2,(c)5000 A/cm2,(d)6000 A/cm2,(e)8000A/cm2。 31 圖3-5 Sn-9wt%Zn合金銲錫薄帶於電流密度2000~8000A/cm2條件下連續通電一小時,Zn(002)繞射峰曲線下面積積分強度比值與通電時間之關係圖。 33 圖3-6 Sn-9wt%Zn合金銲錫薄帶於不同電流密度通電瞬間之試片表面溫度。 34 圖3-7 Sn-9wt%Zn合金銲錫薄帶於電流密度2000到8000A/cm2條件下連續通電一小時,Zn(002)結晶面所產生之晶格膨脹應變量與時間之關係圖。 36 圖3-8 Sn-9wt%Zn合金銲錫薄帶於電流密度7000A/cm2條件下通電3小時50分鐘並以液態氮快速冷卻後之微結構。(a)(b)分別為不同位置。 38 圖3-9 電流密度8000A/cm2條件下通電17小時並以液態氮快速冷卻後之富鋅相表面形貌。(a)孔洞在晶界上成核與擴展,(b)晶界上形成連續之孔洞。 40 圖3-10 電流密度8000A/cm2條件下通電14小時並以液態氮快速冷卻後之Sn-9wt%Zn薄帶試片表面形貌。(a) (b)富鋅相往晶粒內部溶解,(c)溶解持續往晶粒內部擴展,(d)富鋅相表面完全溶解。 41 圖3-11 Sn-9wt%Zn銲錫薄帶之橫截面FIB影像圖。(a)圖3-10(c)之虛線往晶粒內部橫截面圖,(b) 圖3-10(d)之虛線往晶粒內部橫截面圖。 43 圖3-12 電流密度8000A/cm2條件下通電30分鐘並以液態氮快速冷卻後之Sn-9wt%Zn薄帶試片表面形貌。(a)富鋅相之六方表面溶解,(b)(c) 六方表面溶解在次晶粒之晶界上。 44 圖3-13 Sn-9wt%Zn銲錫薄帶試片與內部鋅晶粒之結構示意圖,鋅晶粒六方最密堆積結構(HCP)之基面傾向平行於試片表面。 45 圖3-14 Sn-9wt%Zn銲錫薄帶之橫截面FIB影像圖。(a)圖3-12(b)之虛線往晶粒內部橫截面圖,(b)圖3-12(c)之虛線往晶粒內部橫截面圖。 48 圖3-15 電致富鋅相溶解之孔洞形成機制示意圖。(a)通電前,(b)通電中晶界處鋅原子受電子風衝擊而跳離原位置進入錫基地相,(c)鋅原子跳離處電流聚集,周圍鋅原子可能為下一溶解之原子,(d)孔洞形成。 49 圖3-16 富鋅相通電前之[010]區軸(zone axis)方向的(a)HRTEM影像,(b)為(a)之傅立葉繞射圖譜。 51 圖3-16 (續上頁),富鋅相通電前的微結構,(e)~(g)為(d)中三組繞射平面之反傅立葉影像,分別為Zn(001)、Zn(101)與Zn(100)。 52 圖3-17 陰極區域內富鋅相以電流密度8000A/cm2通電一小時後之[010]區軸(zone axis)方向的(a)HRTEM影像,(b)為(a)中黃色方框之反傅立葉影像,(c)為(a)中藍色方框之反傅立葉影像。 54 圖3-17 (續上頁),陰極區域內富鋅相以電流密度8000A/cm2通電一小時後之微結構,(d)為(a)之傅立葉繞射圖譜,(e)~(g)為(d)中三組繞射平面之反傅立葉影像,分別為Zn(102)、Zn(102)與Zn(100)。 55 圖3-18 陽極區域內富鋅相以電流密度8000A/cm2通電一小時後之[010]區軸(zone axis)方向的(a)HRTEM影像,(b)為(a)中黃色方框之反傅立葉影像。 56 圖3-18 (續上頁),陽極區域內富鋅相以電流密度8000A/cm2通電一小時後之微結構,(c)為(a)之傅立葉繞射圖譜,(d)~(f)為(c)中三組繞射平面之反傅立葉影像,分別為Zn(001)、Zn(101)與Zn(100)。 57 圖3-19 通電前的薄帶試片區分為左中右三區塊,且相對於通電後的試片陰極、中間、陽極三區塊。 60 圖3-20 通電前錫鋅薄帶試片之左區域錫鋅兩相分佈狀況與比例。 61 圖3-21 Sn-9wt%Zn銲錫薄帶試片通電前之內部晶粒粒徑尺寸分佈,(a)錫晶粒粒徑尺寸分佈,(b)鋅晶粒粒徑尺寸分佈。 62 圖3-22 通電前Sn-9wt%Zn銲錫薄帶試片各區域之晶粒取向繪圖與Color bar。(a)左區域,(b)中間區域,(c)右區域,(d)Color bar。 63 圖3-23 Sn-9wt%Zn銲錫薄帶試片施以電流密度8000A/cm2經14小時通電後各區域之晶粒取向繪圖。(a)陰極區域,(b)中間區域,(c)陽極區域。 65 圖3-24 圖3-23所示陰極區域之錫鋅兩相分布狀況與比例。 66 圖3-25 通電前與施以電流密度8000A/cm2經14小時通電後之晶粒粒徑變化,(a)錫晶粒,(b)鋅晶粒。 68 圖3-26 Sn-9wt%Zn銲錫薄帶試片通電前與施以電流密度8000A/cm2經14小時通電後各區域結晶面所提供訊號強度之反極圖(Inverse Pole Figure)。(a)通電前各區域錫晶粒之反極圖,(b)電流密度8000A/cm2經14小時通電後各區域錫晶粒之反極圖,(c)通電前各區域鋅晶粒之反極圖,(d)電流密度8000A/cm2經14小時通電後各區域鋅晶粒之反極圖。 70 圖3-27 在電流密度8000A/cm2下,通電15分鐘、30分鐘、45分鐘、60分鐘後各區域(陰極、中間區域與陽極)之錫基地相鋅濃度。 74

    [1] Y. C. Chan and D. Yang, "Failure mechanisms of solder interconnects under current stressing in advanced electronic packages," Progress in Materials Science, vol. 55, pp. 428-475, 2010.
    [2] C. S. Hau-Riege, "An introduction to Cu electromigration," Microelectronics Reliability, vol. 44, pp. 195-205, 2004.
    [3] J. P. Dekker, C. A. Volkert, E. Arzt and P. Gumbsch "Alloying Effects on Electromigration Mass Transport," Physical Review Letters, vol. 87, pp. 035901-1~035901-4, 2001.
    [4] X. Zhu, H. Kotadia, S. Xu, H. Lu, S. H. Mannan, C. Bailey and Y. C. Chan, "Electromigration in Sn–Ag solder thin films under high current density," Thin Solid Films, vol. 565, pp. 193-201, 2014.
    [5] C. M. Chen, Y. M. Hung, C. P. Lin and W. C. Su, "Effect of temperature on microstructural changes of the Sn-9wt.%Zn lead-free solder stripe under current stressing," Materials Chemistry and Physics, vol. 115, pp. 367-370, 2009.
    [6] W. Yue, H. B. Qin, M. B. Zhou, X. Ma and X. P. Zhang, "Electromigration induced microstructure evolution and damage in asymmetric Cu/Sn-58Bi/Cu solder interconnect under current stressing," Transactions of Nonferrous Metals Society of China, vol. 24, pp. 1619-1628, 2014.
    [7] Q. T. Huynh, C. Y. Liu, C. Chen and K. N. Tu, "Electromigration in eutectic SnPb solder lines," Journal of applied physics, vol. 89, pp. 4332-4335, 2001.
    [8] E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius and H. Balkan, "Current-crowding-induced electromigration failure in flip chip solder joints," Applied Physics Letters, vol. 80, pp. 580-582, 2002.
    [9] Y. S. Lai and C. L. Kao, "Electrothermal coupling analysis of current crowding and Joule heating in flip-chip packages," Microelectronics Reliability, vol. 46, pp. 1357-1368, 2006.
    [10] A. Lodder, "The driving force in electromigration," Physica A: Statistical Mechanics and its Applications, vol. 158, pp. 723-739, 1989.
    [11] Y. D. Lu, X. Q. He, Y. F. En, X. Wang and Z. Q. Zhuang, "Polarity effect of electromigration on intermetallic compound formation in SnPb solder joints," Acta Materialia, vol. 57, pp. 2560-2566, 2009.
    [12] X. F. Zhang, J. D. Guo and J. K. Shang, "Reverse polarity effect from effective charge disparity during electromigration in eutectic Sn–Zn solder interconnect," Journal of Materials Research, vol. 23, pp. 3370-3378, 2008.
    [13] J. Shi and H. B. Huntington, "Electromigration of gold and silver in single crystal tin," Journal of Physics and Chemistry of Solids, vol. 48, pp. 693-696, 1987.
    [14] F. Y. Ouyang, K. N. Tu and Y. S. Lai, "Effect of electromigration induced joule heating and strain on microstructural recrystallization in eutectic SnPb flip chip solder joints," Materials Chemistry and Physics, vol. 136, pp. 210-218, 2012.
    [15] Q. L. Yang and J. K. Shang, "Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect," Journal of Electronic Materials, vol. 34, pp. 1363-1367, 2005.
    [16] J. Daghfal and J. K. Shang, "Current-Induced Phase Partitioning in Eutectic Indium-Tin Pb-Free Solder Interconnect," Journal of Electronic Materials, vol. 36, pp. 1372-1377, 2007.
    [17] Y. T. Chiu, K. L. Lin and Y. S. Lai, "Orientation transformation of Pb grains in 5Sn–95Pb/63Sn–37Pb composite flip-chip solder joints during electromigration test," Journal of Materials Research, vol. 23, pp. 1877-1881, 2008.
    [18] A. T. Wu, A. M. Gusak, K. N. Tu and C. R. Kao, "Electromigration-induced grain rotation in anisotropic conducting beta tin," Applied Physics Letters, vol. 86, pp. 241902-1~241902-3, 2005.
    [19] G. Zhao and F. Yang, "Effect of DC current on tensile creep of pure tin," Materials Science and Engineering: A, vol. 591, pp. 97-104, 2014.
    [20] L. Van de Voorde, B. Vekemans, E. Verhaeven, P. Tack, R. D. Wolf, J. Garrevoet, P. Vandenabeele and L. Vincze, "Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 110, pp. 14-19, 2015.
    [21] A. S. Budiman, "6 - The evolution of microstructure in copper interconnects during electromigration," Electromigration in Thin Films and Electronic Devices, Woodhead Publishing, pp. 135-189, 2011.
    [22] J. Y. He, K. L. Lin and A. T. Wu, "The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing," Journal of Alloys and Compounds, vol. 619, pp. 372-377, 2015.
    [23] C. N. Liao, K. C. Chen, W. W. Wu and L. J. Chen, "In situ transmission electron microscope observations of electromigration in copper lines at room temperature," Applied Physics Letters, vol. 87, pp. 141903-1~141903-3, 2005.
    [24] Y. T. Chiu, C. H. Liu, K. L. Lin and Y. S. Lai, "Supersaturation induced by current stressing," Scripta Materialia, vol. 65, pp. 615-617, 2011.
    [25] Y. T. Chiu, K. L. Lin and Y. S. Lai, "Dissolution of Sn in a SnPb solder bump under current stressing," Journal of Applied Physics, vol. 111, pp. 043517-1~043517-8, 2012.
    [26] W. Y. Chen, T. C. Chiu, K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong and H. Y. Lee, "Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress," Scripta Materialia, vol. 68, pp. 317-320, 2013.
    [27] H. Radamson and L. Thylén, "Chapter 4 - Moore’s Law for Photonics and Electronics," Monolithic Nanoscale Photonics–Electronics Integration in Silicon and Other Group IV Elements, Oxford: Academic Press, pp. 121-150, 2015.
    [28] M. L. Huang, Q. Zhou, N. Zhao, and Z. J. Zhang, "Abnormal Diffusion Behavior of Zn in Cu/Sn-9 wt.%Zn/Cu Interconnects During Liquid–Solid Electromigration," Journal of Electronic Materials, vol. 42, pp. 2975-2982, 2013.
    [29] M. Tomita and T. G. M. Van De Ven, "Calculation of diffraction angles in ordered latices," Journal of Colloid and Interface Science, vol. 100, pp. 112-115, 1984.
    [30] S. R. Stock and B. D. Cullity," Elements of X-ray Diffraction, 3rd ed., Prentice Hall, p. 441, 2001.
    [31] T. J. Lardner and R. R. Archer," Mechanics of Solids: An Introduction, McGraw-Hill, p. 60, 1994.
    [32] S. Mrowec and S. Marcinkiewicz," Defects and diffusion in solids:
    an introduction, Elsevier Amsterdam, pp. 277-279, 1980.
    [33] F. C. Porter," Zinc handbook: properties, processing, and use in design, CRC Press, p. 45, 1991.
    [34] W. D. Callister and D. G. Rethwisch," Fundamentals of materials science and engineering: an integrated approach: John Wiley & Sons, pp. 265-266, 2012.
    [35] D. T. Castro, R. J. O. M. Hoofman, J. Michelon, D. J. Gravesteijn and C. Bruynseraede," Void growth modeling upon electromigration stressing in narrow copper lines," Journal of Applied Physics, vol. 102, pp. 123515-1~123515-12, 2007.
    [36] C. L. Gan and M. K. Lim, "5 - Voiding in copper interconnects during electromigration," Electromigration in Thin Films and Electronic Devices, Woodhead Publishing, pp. 113-134, 2011.
    [37] 黃漢婕, "錫3.5銀銲錫合金通電中微結構變化之研究, 國立成功大學碩士論文, p. 39, 民國103年.
    [38] W. D. Callister and D. G. Rethwisch," Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons, p.177, 2012.
    [39] S. Wang, Z. Zhu, and M. Starink," Estimation of dislocation densities in cold rolled Al‐Mg‐Cu‐Mn alloys by combination of yield strength data, EBSD and strength models," Journal of microscopy, vol. 217, pp. 174-178, 2005
    [40] C. C. Chung, S. W. Wang, Y. C. Chen, C. P. Ju and J. H. C. Lin, "Effect of cold rolling on structure and tensile properties of cast Ti–7.5Mo alloy," Materials Science and Engineering: A, vol. 631, pp. 52-66, 2015.
    [41] C. E. Ho, C. H. Yang, and L. H. Hsu, "Electromigration in thin-film solder joints," Surface and Coatings Technology, vol. 259, Part B, pp. 257-261, 2014.
    [42] F. Abd El-Salam, A. M. Abd El-Khalek and R. H. Nada, "Study of the structural and mechanical properties of Sn–8.6wt.%Zn alloys using creep measurements," Materials Science and Engineering: A, vol. 460-461, pp. 14-19, 2007.
    [43] P. S. Ho and T. Kwok, "Electromigration in metals," Reports on Progress in Physics, vol. 52, pp. 301-348, 1989.
    [44] S. Kumar, M. T. Alam, Z. Connell and M. A. Haque, "Electromigration stress induced deformation mechanisms in free-standing platinum thin films," Scripta Materialia, vol. 65, pp. 277-280, 2011.
    [45] I. A. Blech, "Electromigration in thin aluminum films on titanium nitride," Journal of Applied Physics, vol. 47, pp. 1203-1208, 1976.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE