| 研究生: |
蔡志宏 Tsai, Chih-Hung |
|---|---|
| 論文名稱: |
耐力運動與熱量限制對於成年雄性大鼠骨髓腔內脂肪球細胞與骨代謝之影響 The effects of endurance exercise and caloric restriction on bone marrow adipocytes and bone metabolism in adult male rats |
| 指導教授: |
黃滄海
Huang, Tsang-Hai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 25 |
| 中文關鍵詞: | 耐力運動 、熱量限制 、骨髓腔脂肪細胞 、骨代謝 |
| 外文關鍵詞: | endurance exercise, caloric restriction, bone marrow adipocytes, bone metabolism |
| 相關次數: | 點閱:236 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨髓腔內脂肪細胞在骨代謝過程中所扮演的角色是近年來的新興研究議題,研究結果對骨髓腔內脂肪細胞的評價尚未有定論。目的:本研究探討耐力運動及熱量限制介入對於雄性大鼠骨髓腔脂肪細胞與骨代謝、骨組織型態之影響。方法:本實驗以週齡26週雄性Sprague-Dawley (SD) 大鼠為實驗對象,依照控制組 (control group, CON)、耐力運動訓練 (endurance exercise, EXE) 及40%與20% 熱量限制 (caloric restriction, CR40%, CR20%) 等實驗設計分為四組,分別為CON (n=12)、EXE (n=12)、CR40% (n=12)、CR20% (n=12)。耐力運動組別的動物以16公尺/分鐘,每週訓練五天;熱量限制組的動物則是以控制組的每日飼料攝取量減少40%與20%為熱量限制,實驗介入期為9週。本研究分析所得之依變項數值採用單因子變異數分析 (one-way ANOVA) 以及單因子共變數分析 (one-way ANCOVA)(以體重為共變量)進行各組間的差異性比較,當p<.05視為達顯著水準,則以Fisher’s LSD方法進行事後比較。結果:在體重方面,實驗介入後的第1.5~2週後,CR 40 %、CR 20% 及EXE組即顯著低於CON組。在骨髓腔的脂肪細胞、海綿骨靜態骨骼組織型態學與海綿骨骨密度等參數方面,各組間無論是以one-way ANOVA 或 ANCOVA進行統計分析,均未呈現顯著差異。在血液指標上面, CON組在瘦素 (leptin) 、胰島素(insulin)和三酸甘油脂 (TG) 顯著大於其他三組,CR20%與EXE在胰島素的表現上也顯著大於CR40%,血糖(glucose)方面,CR20%顯著高於CR40%與EXE,其他項目均未達顯著差異。結論:飲食限制與耐力運動訓練在改善能量代謝及減重後,並未進一步未造成成年骨髓腔脂肪細胞與各項骨質測量參數進一步的負面結果。
The role of bone marrow adipocyte in bone metabolism has been vigorously investigated in recently years and the results were controversial. Objective: The purpose of this study was to investigate the effects of endurance exercise and caloric restriction on morphology of bone marrow adipocytes, spongy bone histomorphometry and densitometry and bone metabolism in adult male rats. Methods: Forty eight male Sprague-Dawley (SD) rats (26-week-old) were randomly assigned into four groups, which were the control (CON, n=12), 40 % caloric restriction (CR40%, n=12), 20 % caloric restriction (CR20%, n=12) and endurance exercise (EXE, n=12) groups. Animals of the CR40% and CR20% groups respectively subjected to 40% and 20% dietary restriction according to the average daily intake in the CON group. Animals of the EXE group subjected to treadmill run at a speed of 16 m/min, 1 hour/day and five days a week. After nine weeks of experimental intervention, the animals were euthanized, and tibiae and blood samples were collected for spongy bone histomorphometry and densitometry analyses, bone marrow adipocyte morphology analyses and serum bone marker assays. Statistical methods of One-way ANOVA and one-way ANCOVA were used for comparing the difference among groups. Result: In body weight, the CR40%, CR20%, EXE group showed significantly less body weight compared to the CON group after 1~1.5 weeks of experimental interventions. In order to investigate bone metabolic status after 9 weeks of experimental intervention, several related serum markers including collagen type 1 cross-linked C-telopeptide (CTX-1), procollagen type 1 amino-terminal propeptide (P1NP), triglycerides (TGs), leptin, and cholesterol were measured. In serum leptin, the CR40%, CR20%, EXE groups demonstrated significantly lower values when compared to the CON groups (p<0.05). In addition, serum triglyceride (TG) and insulin was lower in the CR40% group as compared to the CR20% and EXE groups (p<0.05). Serum glucose, the CR20% group demonstrated significantly higher values when compared to the CR40% and EXE groups (p<0.05). In bone marrow adipocytes, histomorphometric and densitometric indices, no significant difference was shown among all groups. Conclusion: In spite of the favourable changes induced by caloric restriction and endurance exercise in body weight and energy profile, no detrimental effects was shown in bone marrow adipocytes as well as various bone mineral measurements.
Bigard, A. X., Brunet, A., Guezennec, C. Y., & Monod, H. (1991). Effects of chronic hypoxia and endurance training on muscle capillarity in rats. Pflugers Arch, 419(3-4), 225-229.
Cerri, P. S., Boabaid, F., & Katchburian, E. (2003). Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. J Periodontal Res, 38(2), 223-226.
Chen, Y., Wang, S., Bu, S., Wang, Y., Duan, Y., & Yang, S. (2011). Treadmill training prevents bone loss by inhibition of PPARgamma expression but not promoting of Runx2 expression in ovariectomized rats. Eur J Appl Physiol, 111(8), 1759-1767. doi: 10.1007/s00421-010-1820-0
Devlin, M. J. (2011). Why does starvation make bones fat? Am J Hum Biol, 23(5), 577-585. doi: 10.1002/ajhb.21202
Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., . . . Bouxsein, M. L. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res, 25(9), 2078-2088. doi: 10.1002/jbmr.82
Forst, R., Forst, J., & Heller, K. D. (1995). Ipsilateral peroneus brevis tendon grafting in a complicated case of traumatic rupture of tibialis anterior tendon. Foot Ankle Int, 16(7), 440-444.
Fredericson, M., Chew, K., Ngo, J., Cleek, T., Kiratli, J., & Cobb, K. (2007). Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med, 41(10), 664-668; discussion 668. doi: 10.1136/bjsm.2006.030783
Fredericson, M., Ngo, J., & Cobb, K. (2005). Effects of ball sports on future risk of stress fracture in runners. Clin J Sport Med, 15(3), 136-141.
Guerre-Millo, M. (2002). Adipose tissue hormones. J Endocrinol Invest, 25(10), 855-861.
Hamrick, M. W. (2004). Leptin, bone mass, and the thrifty phenotype. J Bone Miner Res, 19(10), 1607-1611. doi: 10.1359/JBMR.040712
Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J Bone Miner Metab, 26(4), 350-357. doi: 10.1007/s00774-007-0831-3
Huang, T. H., Hsieh, S. S., Liu, S. H., Chang, F. L., Lin, S. C., & Yang, R. S. (2010). Swimming training increases the post-yield energy of bone in young male rats. Calcif Tissue Int, 86(2), 142-153. doi: 10.1007/s00223-009-9320-0
Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol (1985), 95(1), 300-307. doi: 10.1152/japplphysiol.01076.2002
Jensen, L. B., Quaade, F., & Sorensen, O. H. (1994). Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res, 9(4), 459-463. doi: 10.1002/jbmr.5650090404
Jones, J. R., Barrick, C., Kim, K. A., Lindner, J., Blondeau, B., Fujimoto, Y., . . . Magnuson, M. A. (2005). Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A, 102(17), 6207-6212. doi: 10.1073/pnas.0306743102
Kawai, M., Devlin, M. J., & Rosen, C. J. (2009). Fat targets for skeletal health. Nat Rev Rheumatol, 5(7), 365-372. doi: 10.1038/nrrheum.2009.102
Kricun, M. E. (1985). Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol, 14(1), 10-19.
Krings, A., Rahman, S., Huang, S., Lu, Y., Czernik, P. J., & Lecka-Czernik, B. (2012). Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone, 50(2), 546-552. doi: 10.1016/j.bone.2011.06.016
LaMothe, J. M., Hepple, R. T., & Zernicke, R. F. (2003). Selected contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 x Brown-Norway F1-hybrid rats. J Appl Physiol (1985), 95(4), 1739-1745. doi: 10.1152/japplphysiol.00079.2003
McCay, C. M., Crowell, M. F., & Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 5(3), 155-171; discussion 172.
Menuki, K., Mori, T., Sakai, A., Sakuma, M., Okimoto, N., Shimizu, Y., . . . Nakamura, T. (2008). Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone, 43(3), 613-620. doi: 10.1016/j.bone.2008.04.022
Notomi, T., Okazaki, Y., Okimoto, N., Saitoh, S., Nakamura, T., & Suzuki, M. (2000). A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. Eur J Appl Physiol, 83(6), 469-474. doi: 10.1007/s004210000316
Piney, A. (1922). The anatomy of the bone marrow. The British Medical Journal, 2, 792-795.
Ryan, A. S., Nicklas, B. J., & Dennis, K. E. (1998). Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J Appl Physiol (1985), 84(4), 1305-1310.
Scheller, E. L., & Rosen, C. J. (2014). What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci, 1311, 14-30. doi: 10.1111/nyas.12327
Scofield, K. L., & Hecht, S. (2012). Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep, 11(6), 328-334. doi: 10.1249/JSR.0b013e3182779193
Shah, K., Armamento-Villareal, R., Parimi, N., Chode, S., Sinacore, D. R., Hilton, T. N., . . . Villareal, D. T. (2011). Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res, 26(12), 2851-2859. doi: 10.1002/jbmr.475
Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., . . . Karsenty, G. (2002). Leptin regulates bone formation via the sympathetic nervous system. Cell, 111(3), 305-317.
Trayhurn, P., & Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc, 60(3), 329-339.
Trudel, G., Coletta, E., Cameron, I., Belavy, D. L., Lecompte, M., Armbrecht, G., . . . Uhthoff, H. K. (2012). Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men. J Appl Physiol (1985), 112(11), 1824-1831. doi: 10.1152/japplphysiol.00029.2012
Villareal, D. T., Kotyk, J. J., Armamento-Villareal, R. C., Kenguva, V., Seaman, P., Shahar, A., . . . Fontana, L. (2011). Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term calorie restriction with adequate nutrition. Aging Cell, 10(1), 96-102. doi: 10.1111/j.1474-9726.2010.00643.x