| 研究生: |
高秉豪 Kao, Bing-Hao |
|---|---|
| 論文名稱: |
還原碴中氧化鎂調質及其作為水泥膠結材料之探討 Modifying the expansion of MgO in ladle slag to use as cementitious material in cement |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 電弧爐還原碴 、氧化鎂 、調質技術 、水泥膠結材料 |
| 外文關鍵詞: | EAF ladle slag, MgO, modify technology, Portland material |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電弧爐還原碴(EAF ladle slag)的化學組成富含Ca、Si元素,與水泥、高爐石相似,然而因含有f-CaO、f-MgO,若將還原碴作為工程材料應用時,存在健性不穩定的問題,其中又以f-MgO所造成的膨脹問題較為嚴重,因此解決f-MgO的膨脹為爐碴再利用的首要目標。僅管許多研究已開發各種不同的還原碴安定化程序,但是這些技術往往伴隨著高耗能、高成本、效率低、工作性差等的問題,因此尋找一個綠色的安定化程序,使還原碴能被再利用是個重要課題。本研究首先以不同煅燒程度的MgO進行反應速率與膨脹行為的探討,接著依配比設計調質劑的添加以評估調質效果,同時利用熱壓膨脹試驗評估其抑制膨脹的效果,最後將調質技術與配比應用於還原碴中,以驗證對還原碴之調質成效,並進行工程應用與環境相容性之試驗,以評估調質還原碴作為卜作嵐材料之潛力及其環境相容性。
研究結果顯示,氧化鎂的晶粒大小會受到煅燒的條件影響而有所差異,其中輕燒氧化鎂(Light-burnt Magnesia)、重燒氧化鎂(Hard-burnt Magnesia)、僵燒氧化鎂(Dead-burnt Magnesia)的晶粒大小分別約為24 nm、116.64 nm、132.91 nm。氧化鎂的晶粒與粒徑會影響其反應性與反應速率,其中以晶粒大小的影響較為明顯,晶粒愈大,反應速率愈小,其差異達數百倍,而粒徑大其反應速率較小;其差異約1~3倍。實驗結果得知,LMgO反應速率快不會對水泥漿體產生健性不穩定的問題,HMgO與DMgO分別添加至5%與2.5%便會造成水泥漿體出現健性不穩定的現象。透過熱重熱流分析不同煅燒MgO之水泥漿體得知造成健性不穩定的氫氧化鎂變化量約為6%,可以此作為評估調質成效之依據。
反應性低的HMgO、DMgO與調質劑依MgO與SiO2設計適當的比例,得以生成不具膨脹性的鎂矽水合物(Magnesium Silicate Hydrate,MSH)。重燒氧化鎂與調質劑若以2:8的比例所製水泥漿體則可以符合健性評估的標準,僵燒氧化鎂由於反應性更差,因此僵燒氧化鎂與調質劑需要以1:9的比例所製水泥漿體才可達到健性評估的標準。還原碴中氧化鎂的晶粒接近僵燒氧化鎂約為128 nm,以氧化鎂與調質劑1:9的比例進行調質其熱壓膨脹的長度變化量為0.04%可符合品質標準(<0.8%),亦即此調質技術得以達到安定化還原碴之效果。同時調質還原碴之活性指數皆符合品質標準所訂定之75%以上,而環境相容性方面也沒有重金屬溶出的疑慮,因此本研究開發的調質技術可將還原碴轉化為優良的卜作嵐摻料。
The chemical composition of EAF ladle slag is rich in Ca and Si elements, which is similar to cement and ground granulated blast furnace slag. However, if ladle slag is used as an engineering material, the soundness can’t confirm the standard due to free CaO (f-CaO) and free MgO (f-MgO) in ladle slag. Between f-CaO and f-MgO, the soundness problem caused by f-MgO is more serious, so solving the expansion of f-MgO is the primary goal. Although many researches have developed a variety of different EAF ladle slag stable technology, but these technologies are often accompanied by high energy consumption, high cost, low efficiency, and poor workability. To reuse EAF ladle slag, it is an important issue to find a green stabilization program. In this study, the reaction rate and expansion behavior of MgO with different calcination levels were discussed, and then evaluate the modify effect with addition different ratio of modifiers. At the same time, the autoclave expansion test is used to evaluate the modify effect. Finally, the modify technology and ratio are applied to EAF ladle slag to verify the modify effect on EAF ladle slag, and the engineering application and environmental compatibility test are carried out to evaluate the potential of the modify ladle slag as a Portland material and its environment compatibility.
Akin Altun, I., & Yilmaz, I., Study on steel furnace slags with high MgO as additive in Portland cement, Cement and Concrete Research, Vol. 32, NO. 8, pp. 1247–1249, 2002.
Aphane, M. E., The hydration of magnesium oxide with different, Master Thesis of UNIVERSITY OF SOUTH AFRICA, March, 2007.
Aral, H., Hill, B. D., & Sparrow, G. J., Salts from saline waters and value added products from the salts, CSIRO Minerals, pp. 42–64, 2004.
Bocanegra-Bernal, M. H., Microstructural evolution during sintering in MgO powders precipitated from sea water under induced agglomeration conditions, Powder Technology, Vol. 186, NO. 3, pp. 267–272, 2008.
Boynton, R. S., Chemistry and Technology of Lime and Limestone, 1966.
Canterford, J. H., Magnesia-an important industrial mineral: A review of processing options and uses, Mineral Procesing and Extractive Metallurgy Review, Vol. 2, NO. 1–2, pp. 57–104, 1985.
Chatterji, S., Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO, Cement and Concrete Research, Vol. 25, NO. 1, pp. 51–56, 1995.
Chiaia, B., Fantilli, A. P., & Ventura, G., A chemo-mechanical model of lime hydration in concrete structures, Construction and Building Materials, Vol. 29, pp. 308–315, 2012.
Crawford, C. B., & Burn, K. N., Building damage from expansive steel slag backfill, Journal of the Soil Mechanics and Foundations Division, Vol. 95, NO. 6, pp. 1325–1334, 1969.
Cullity, B. D., & Stock, S. R., Elements of X-Ray diffraction, Upper Saddle: Prentice Hall, 2001.
DeSoares, M. M. N. S., Garcia, D. C. S., Figueiredo, R. B., Aguilar, M. T. P., & Cetlin, P. R., Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2, Cement and Concrete Composites, Vol. 71, pp. 20–25, 2016.
Demir, F., Laçin, O., & Dönmez, B., Leaching kinetics of calcined magnesite in citric acid solutions, Industrial and Engineering Chemistry Research, Vol. 45, NO. 4, pp. 1307–1311, 2006.
Diamond, S., Barneyback, R. S. J., & Struble, L. J., On the physics and chemistry of alkali-silica reactions, Proceedings of the Fifth Conference on Alkali-Aggregate Reaction in Concrete, pp. 1–11, 1981.
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & VanDeventer, J. S. J., Geopolymer technology: The current state of the art, Journal of Materials Science, Vol. 42, NO. 9, pp. 2917–2933, 2007.
Duxson, Peter, & Provis, J. L., Designing precursors for geopolymer cements, Journal of the American Ceramic Society, Vol. 91, NO. 12, pp. 3864–3869, 2008.
Farny, J. a, & Kosmatka, S. H., Diagnosis and control of alkali-aggregate reactions in concrete, Portland Cement Association, pp. 1–23, 1997.
Fernández-Jiménez, A., Palomo, J. G., & Puertas, F., Alkali-activated slag mortars: Mechanical strength behaviour, Cement and Concrete Research, Vol. 29, NO. 8, pp. 1313–1321, 1999.
Geiseler, J., & Schlosser, R., Investigation concerning the structure and properties of steel slags, In 3rd International Conference on Molten Slags and Fluxes, pp. 66–69, 1988.
Hadley, D. W., Alkali reactivity of carbonate rocks-expansion and dedolomitization, In Highway Research Board Proceedings, Vol. 40, NO. 45, pp. 235–244, 1961.
Huang, K., Shi, X., Zollinger, D., Mirsayar, M. M., Wang, A., & Mo, L., Use of MgO expansion agent to compensate concrete shrinkage in jointed reinforced concrete pavement under high-altitude environmental conditions, Construction and Building Materials, Vol. 202, pp. 528–536, 2019.
Jin, F., & Al-Tabbaa, A., Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature, Thermochimica Acta, Vol. 566, pp. 162–168, 2013.
Jones, C. F., Segall, R. L., Smart, R. S. C., & Turner, P. S., Initial dissolution kinetics of ionic oxides, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 374, NO. 1756, pp. 141–153, 1981.
Lee, Y. C., Yang, C. C., Tsai, L. W., & Yue, M. T., The application and breakthrough of BOF slag modification technique in CSC, Mining & Metallurgy, Vol. 58, NO. 4, pp. 23–32, 2014.
Li, C., Sun, H., & Li, L., A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements, Cement and Concrete Research, Vol. 40, NO. 9, pp. 1341–1349, 2010.
Li, J., Yu, Q., Wei, J., & Zhang, T., Structural characteristics and hydration kinetics of modified steel slag, Cement and Concrete Research, Vol. 41, NO. 3, pp. 324–329, 2011.
Montgomery, D. G., & Wang, G., Preliminary laboratory study of steel slag for blended cement manufacture, Materials Forum, Vol. 15, NO. 4, pp. 374–382, 1991.
Oates, J. A. H., Lime and limestone, Kirk-Othmer Encyclopedia of Chemical Technology, pp. 1–53, 2000.
Palomo, A., Grutzeck, M. W., & Blanco, M. T., Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, Vol. 29, NO. 8, pp. 1323–1329, 1999.
Provis, J. L., & VanDeventer, J. S. J., Geopolymers: Structure, processing,properties and industrial applications, Woodhead Publishing Limited,UK, 2009.
Santhanam, M., Cohen, M. D., & Olek, J., Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars, Cement and Concrete Research, Vol. 32, NO. 4, pp. 585–592, 2002.
Wang, Q., Wang, D., & Zhuang, S., The soundness of steel slag with different free CaO and MgO contents, Construction and Building Materials, Vol. 151, pp. 138–146, 2017.
Wang, Q., & Yan, P., Hydration properties of basic oxygen furnace steel slag, Construction and Building Materials, Vol. 24, NO. 7, pp. 1134–1140, 2010.
Wang, S. D., & Scrivener, K. L., Hydration products of alkali activated slag cement, Cement and Concrete Research, Vol. 25, NO. 3, pp. 561–571, 1995.
Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H., An overview of utilization of steel slag, Procedia Environmental Sciences, Vol. 16, pp. 791–801, 2012.
Zhu, J., Ye, N., Liu, J., & Yang, J., Evaluation on hydration reactivity of reactive magnesium oxide prepared by calcining magnesite at lower temperatures, Industrial and Engineering Chemistry Research, Vol. 52, NO. 19, pp. 6430–6437, 2013.
劉崢、韓蘇芬、唐明述,鹼-碳酸鹽岩反應機理,南京化工學院矽酸鹽工程系,第15卷,第四期,第302~308頁,1987.
嚴育通、景燕、馬軍,氯氧鎂水泥的研究進展,鹽湖研究,第16卷,第一期,第60~66頁,2008.
孫永明,菱鎂礦煅燒氧化鎂水化製備高純超細氫氧化鎂,南京工業大學,碩士論文,2005.
張復盛、許伯良,他山之石國外爐石/碴之應用,中國礦冶工程學會, 2014.
張繼譽,脫硫渣細料產製高壓蒸氣養護氣泡混凝土之研究,國立成功大學環境工程學系,碩士論文,2015.
張雲鵬、張旭、李瑞麗,國內外鋼鐵企業鋼碴資源利用及技術新進展,江蘇冶金,第35卷,第六期,第4~6頁,2007.
戴浩安,鹼活化還原碴及其發泡特性對制熱工程材料之影響,國立成功大學環境工程學系,碩士論文,2019.
李兆恒,MgO-SiO2-H2O膠凝體系的反應機制及應用研究,中國學術期刊,第4卷,第2008~2009頁,2015.
李建新、余其俊、韋江雄,鋼渣高溫重構中RO相的轉變規律,武漢理工大學學報,第34卷,第五期,第19~24頁,2012.
李東旭、李鵬曉、馮春花,磷酸鎂水泥耐水性的研究,建築材料學報,第12卷,第五期,第505~510頁,2009.
林梓淞,以迅速法對鹼-骨材反應確認之研究,國立成功大學土木工程研究所,碩士論文,2004.
歐威志,Fabrication of silicon from direct electrolytic reduction of silicon dioxide nanoparticles,國立台灣師範大學化學系,碩士論文,2010.
經濟部工業局,電弧爐煉鋼還原碴資源化應用技術手冊,2001.
經濟部工業局,電弧爐還原碴安定化技術手冊,2017.
蔡和生,鹼活化還原碴砂漿之工程與環境特性研究,國立成功大學環境工程學系,碩士論文,2016.
蔡芷雯,煅燒CaO / MgO對水泥漿體膨脹性之影響,國立成功大學環境工程學系,碩士論文,2016.
蘇鈺荃,電弧爐渣重金屬溶出特性及作為級配材料之可行性研究,國立成功大學環境工程學系,碩士論文,2011.
賴禹村,硫酸鈉溶液環境下飛灰水泥基本力學性質之研究,國立成功大學資源工程學系,碩士論文,2011.
陳宗裕,燒製參數對無機廢棄物合成水泥熟料晶相之影響,國立成功大學環境工程學系,碩士論文,2008.
陳永勛,硫酸鈉溶液環境下卜作嵐水泥基本力學性質之研究,國立成功大學資源工程學系,碩士論文,2013.
高培偉、吳勝興、林萍華、吳中如、唐明述,氧化鎂在不同養護條件下水化產物的形貌分析,無機化學學報,第6卷,第1064~1068頁, 2007.
黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984.
校內:2025-08-01公開