| 研究生: |
林琮楠 Lin, Tsung-Nan |
|---|---|
| 論文名稱: |
撓曲主動薄版單元應用於輕量曲面結構之研究 A Study on Lightweight Curved Surface Structures Composed of Bending-Active Plate Units |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 254 |
| 中文關鍵詞: | 輕量結構 、撓曲主動結構 、薄版曲面系統 、模組化 、實構 |
| 外文關鍵詞: | lightweight structure, bend-active structure, curved surface system, modularization, practical construction |
| 相關次數: | 點閱:256 下載:53 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在追求永續發展的目標下,節能減碳是相當重要的課題,構造輕量化也因此成為結構設計之趨勢。本研究以撓曲主動薄版曲面系統為主題,藉由彎曲薄版創造曲面效果,利用形抗原理達到構造輕量化,並根據前期研究之結論與建議,以提高整體結構剛度與簡化組構方式為目的,發展可由人力重複拆裝之模組式輕量空間結構。
本研究之設計階段嘗試數種結構型態及接合方式,並使用縮尺模型檢討空間圍塑效果及構法可行性,發展出交錯橫向接合及交錯重疊栓接兩種系統,其中交錯重疊栓接系統之單元轉角無法以前期研究之經驗公式概算,故使用縮尺模型重新量測並推導出適用之單元轉角公式。
設計過程中進行多次材料試驗,並根據試驗結果推導、計算材料撓曲容量及使用效益等輔助材料選擇之參數,最終選定平行纖維方向之3mm木夾板為主要材料;接著依照不同結構型態及接合方式,前後共搭建六座單向拱形實構模型,其中以交錯重疊栓接尖拱之結構表現最佳,該模型兩側曲面皆為單向等曲率以減少單元種類,於曲率不連續之頂部以搭接版連接,底部單元則局部補強再與合板製作之基礎卡接。
為精準預測撓曲主動薄版曲面系統之應力分佈及可能破壞情形,本研究使用電腦結構分析軟體,並以數種假設與分析模式模擬此系統之結構行為;在模擬開槽單元應變之四種模型中,以ANSYS實體元素之應變分析結果最接近量測值,誤差約小於10%。本文以簡化SAP2000二維剛架元素建置橫向接合尖拱整體結構分析模型,與實際量測變形量比較,誤差約為70%~95%不等且無法呈現部分構件之挫屈情形,推測原因為簡化結構分析方式未考量單元撐開時之預應力與構件撓曲變形狀況,故發展出結合前述二者之疊加結構分析方法,此方法可檢驗出構件單元之不穩定情形,可用於輔助檢討整體結構之穩定性。
The purpose of this study is to design an innovative lightweight structural system composed of reversible curved surface plate units through active bending. The original plates unit were bent and self-stabilized by inserting braces into precut parallel slits on the plates. Small-scale models were used to examine stability and constructability, and two structural system were developed, including staggered lateral connecting system and staggered overlapping bolting system. Among them, the unit curvature of the staggered overlapping bolting system cannot be estimated by the empirical formula of the previous study, so the small-scale model is used to re-measure and derive the applicable unit bent angle formula.
The material bending capacity and usage efficiency which support the selection of material are derived and calculated based on the results of material test, and 3mm plywood that fiber direction paralleled with the slit was chosen as the main material. Six one-way arched full-size models were built in different structural types and connection detail, among which the pointed arch model of staggered overlapped bolting system has the best strength and stiffness.
In order to predict the stress distribution and the failure mode accurately, this study uses computer structural analysis software to simulate the structural behavior. The strain analysis result of bent unit which simulated by ANSYS solid-element model is closest to the measured value, and the error is less than 10%. The overall models of lateral connecting pointed arch were simplified by the SAP2000 2-D rigid frame model, but it is unable to simulate the component buckling and the deformation error is about 70% to 95%. The possible reason is that the analysis method does not consider the pre-stress and the deflection deformation of bent unit. Therefore, a superimposed structure analysis method combining the above two is developed to examine the stability of the overall structure.
1. Lienhard, J., “Bending-active structures: form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein”, PhD Dissertation, University of Stuttgart, 2014.
2. 李嘉嘉,「輕量曲面木薄板結構之構築研究」,碩士論文,國立成功大學,台南,2014。
3. 郭亭勻,「開槽薄版曲面系統應用於空間結構之研究」,碩士論文,國立成功大學,台南,2017。
4. Fleischmann, M., Knippers, J., Lienhard, J., Menges, A., and Schleicher, S., “Material Behavior : Embedding Physical Properties in Computational Design Processes,” Architectural Design, Vo. 82, Issue 2, pp. 44–51, 2012.
5. Lienhard, J., Alpermann, H., Gengnagel, C., and Knippers, J., “Active bending, a review on structures where bending is used as a self-formation process,” International Journal of Space Structures, Vol. 28, No. 3&4, pp. 187-196, 2013.
6. Lienhard, J. and Knippers, J., “Considerations on the scaling of bending-active structures,” International Journal of Space Structures, Vol. 28, No. 3&4, pp. 137-147, 2013.
7. Schleicher, S., and La Magna, R., “Bending-active plates: form-finding and form-conversion,” Posthuman Frontiers: Data, Designers, and Cognitive Machines, pp. 260-269, 2016.
8. Brancart, S., Popovic Larsen, O., De Laet, L., and De Temmerman, N., “Bending-active reciprocal structures based on equilateral polyhedral geometries,” Proceedings of the IASS Annual Symposium 2017, September 25-28, Hamburg, Germany, 2017.
9. CNS 1349:2014,普通合板,經濟部標準檢驗局。
10. ASTM (2017) Standard D3043-17, Standard Test Methods for Structural Panels in Flexure, American Society for Testing and Material, U.S.A., 2017.
11. ASTM (2013) Standard E855-08, Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading, American Society for Testing and Material, U.S.A., 2013.
12. CNS 12780:2009,玻璃纖維強化塑膠之抗曲性能測定法,經濟部標準檢驗局。