| 研究生: |
陳乃齊 Chen, Nai-Chi |
|---|---|
| 論文名稱: |
石斑魚神經壞死病毒之晶體結構與功能研究 Structural and functional studies of the betanodavirus grouper nervous necrosis virus |
| 指導教授: |
陳俊榮
Chen, Chun-Jung 陳宗嶽 Chen, Tzong-Yueh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 野田病毒科 、神經壞死病毒 、鈣離子結合突出單元 |
| 外文關鍵詞: | Nodaviridae, nervous necrosis virus, calcium-associated protrusion domain |
| 相關次數: | 點閱:154 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣為海洋性島嶼,同時也是現今國際遠洋漁業和水產養殖之生產國。有關野田病毒科(Nodaviridae)的兩個主要屬為alphanodaviruses及betanodaviruses。病毒性神經壞死症(viral nervous necrosis, VNN)由betanodaviruses屬中的神經壞死病毒(nervous necrosis virus, NNV)所引起,主要造成魚苗及幼魚產生病毒性腦炎與視網膜病變且伴隨極高的死亡率。我們利用全始演算法(ab initio method)搭配非結晶學對稱性(non-crystallographic symmetry averaging)完成T=3石斑魚神經壞死累病毒(grouper necrosis virus-like particle, GNNV-LP)結構解析,其解析度為3.6埃(Å)。另外,兩種T=1石斑魚神經壞死次病毒顆粒(subviral particle),包括解析度為3.1埃之突出單元剔除型(delta-P-domain mutant)與N端多精胺酸序列剔除型(N-ARM deletion mutant)也完成其結構分析。除此之外,超高解析度1.2埃之鈣離子結合突出單元(truncated P-domain)呈現石斑魚神經壞死病毒之突出單元具有特異性之DxD序列與鈣金屬離子進行鍵結並且於病毒外殼組裝期間促進三聚體外鞘蛋白之形成且扮演重要角色於專一性宿主感染。經由上述結構及功能性分析,石斑魚神經壞死病毒之突出單元於病毒外鞘組裝及宿主感染皆扮演重要角色。
關鍵字: 野田病毒科、神經壞死病毒、鈣離子結合突出單元。
Structural and functional studies of the betanodavirus grouper nervous necrosis virus
Nai-Chi Chen
Chun-Jung Chen and Tzong-Yueh Chen
Institute of Biotechnology
College of Bioscience and Biotechnology
SUMMARY
Betanodaviruses belong to the family Nodaviridae and cause the mortality of numerous larval-stage fish species. Here we report protein crystal structures of a piscine betanodavirus, the grouper nervous necrosis virus, in four different forms. Highlights are two structural features that contribute to the viral molecular mechanisms of the T=3 and T=1 capsid assembly: a calcium-associated protrusion domain and a functional arginine-rich motif. These results also shed insights into the structural basis for evolutionary lineage of the family Nodaviridae.
Key words: Nodaviridae, nervous necrosis virus, calcium-associated protrusion domain.
INTRODUCTION
Aquaculture is one of the major global economic activities, such as cultivation of marine fish and prawn, in many countries. In fact, Taiwan, an island surrounded by sea, is one of the major distant water fisheries and aquaculture producers in the world. In terms of production and value, aquaculture has long been far ahead of offshore and coastal fisheries combined, and been just the second to distant water fisheries (Chen and Qiu, 2014). Today, aquaculture in Taiwan, including island and marine cultures, is well correlation with Taiwanese economy and society, such as income generation, food source and food supply. Furthermore, several species, such as oyster, farmed fishes and grass carp, have long been reared as an important food source in Taiwan. Currently, the major farmed fishes include milkfish, tilapia, grouper, giant freshwater prawn and pacific white shrimp with the export economic importance in Taiwan (Chen and Qiu, 2014).
The stressful and crowded conditions of aquaculture might cause these most problematic impacts in infectious diseases. Since the first half of the 20th century, the more significant viral pathogens of finfish, including aquabirnaviruses within the family Birnaviridae, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) within the family Rhabdoviridae, infectious salmon anemia virus (ISAV) within the family Orthomyxoviridae, epizootic hematopoietic necrosis virus (EHNV) within the family Iridoviridae and betanodavirus making up the family Nodaviridae are reported (Crane and Hyatt, 2011).
The family Nodaviridae is further classified as the two major genera including alphanodaviruses and betanodaviruses. (Thiery et al., 2004) and displays T=3 symmetry (180 subunits in the capsid) of approximately ~29−35 nm in diameter. Basically, one CP exhibits the typical canonical 8-stranded jelly roll β-barrel fold, which consists of two pairs of antiparallel β-sandwich (Cheng and Brooks, 2013). To elucidate the structural information and mechanisms of capsid conformation, capsid assembly and viral infection by the genus betanodavirus of largely uncharacterized, we have determined the crystal structures of the grouper nervous necrosis virus (GNNV).
MATERIALS AND METHODS
A DNA sequence corresponding to the full-length of orange-spotted grouper nervous necrosis virus (OSGNNV) RNA2 (GenBank accession no KT071606) was amplified with specific primers by PCR and cloned into the artificial vector between SfoI and XhoI restriction sites for the production of N-terminal hexa-histidine-SUMO-tagged fusion protein (Lee et al., 2008).
All constructs were transformed and over-expressed in Escherichia coli (E. coli) BL21-CodonPlus(DE3)-RIL cells (Stratagene). Overexpression of the full-length GNNV CP were induced with 0.5 mM IPTG (isopropyl β-D-thio-galactopyranoside) for overnight at 18°C. The SUMO-tag GNNV CP was then purified from the soluble supernatant by Ni2+-affinity chromatography (HiTrap HP, Amersham Biosciences).
Initial crystallization screening for the GNNV-LP was performed using the hanging-drop vapor diffusion method with a Mosquito liquid-handling robot (TTP Labtech) for high-throughput crystallization condition screening. Crystals appeared within 1−2 weeks under the initial reservoir condition of 0.2 M sodium formate (pH 7.2) and 20% (w/v) PEG3350. The ab initio method by using icosahedral non-crystallographic symmetry (NCS) averaging with phase extension was performed to determine the initial phases of the T=3 GNNV-LP (Taka et al., 2005).
Finally, the coordinates of the T=3 GNNV-LP were refined to a crystallographic Rcryst of 0.257 and Rfree of 0.295 at 3.6 Å resolution. In the current model, 97% of all residues were in the most favored region of the Ramachandran plot and 3% of that was in the allowed regions using MolProbity (Chen et al., 2010).
RESULTS AND DISCUSSION
We determine the 3.6 Å resolution ab initio crystal structure of the T=3 GNNV-LP with non-crystallographic symmetry (NCS) averaging. The manually modeling of residues 52−338 for subunits A and B, and residues 34−338 for subunit C were fitting into the electron density of the icosahedral asymmetric unit (iASU) of the T=3 GNNV-LP. One T=3 GNNV-LP consists of sixty trimeric S-domains that participate in inter-subunit contacts to form a continuous shell of the capsid with an empty inner cavity. Three neighboring P-domains per iASU constitute the predominantly β-strand portion of the protein at the quasi three-fold (Q3) axes to form 60 protrusions on the particle surface. The 180 neighboring monomeric S-domains from subunits A, B and C make up the icosahedral shell in dimeric, trimeric and pentameric interactions along the I2, I3 and icosahedral five-fold (I5) axes (Fig. 1).
The present structures of the genus betanodavirus GNNV provides the important mechanistic insights into the processes of capsid assembly and viral infection. Actually, despite conservations about a viral genome encoding three major proteins and a compatible geometry of the T=3 architecture in the family Nodaviridae, the atomic striking features of the GNNV-LP described here facilitate to delineate the key structural components that trigger the CP oligomerization and stabilize the capsid assembly. The molecular organizations and assembly mechanisms of the genus betanodavirus GNNV reveal that the family Nodaviridae may lead to the novel viral evolutional approaches among the Tombusviridae, Caliciviridae and Birnaviridae families, which are compatible with the independent evolution linage previously. Structural mapping of the GNNV P-domain might facilitate the engineering of the vaccine development in the fish aquaculture industry.
Figure 1. Surface domain-colored diagram (left) and central cavity (right) representations of the T=3 GNNV-LP.
The tip-to-tip distance is ~350 Å, the diameter of the central cavity is ~228 Å, and the spike protrusion on the capsid surface is ~47 Å. The S-domains of the subunits A, B and C are shown in orange, blue and red, respectively, and the P-domains are shown in cyan. The structure of the GNNV-LP is viewed along the I2, I3 and I5 axes.
CONCLUSION
In this study, we report the ab initio structure of a T=3 grouper nervous necrosis virus-like particle (GNNV-LP) at 3.6 Å resolution determined by non-crystallographic symmetry averaging method. In summary, this work provides several important structural insights into the genus betanodavirus GNNV. Despite conservation of a viral genome encoding three major proteins and a compatible geometry of the T=3 architecture in the family Nodaviridae, the structure of the GNNV-LP obtained here allows us to delineate the key structural components that trigger the oligomerization and stabilize the capsid assembly. Furthermore, structural mapping of the GNNV P-domain might be useful for the development of vaccine strategies in the fish aquaculture industry.
Abadzapatero, C., Abdelmeguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D., and Tsukihara, T. Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286, 33-39, 1980.
Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D-Biological Crystallography 66, 213-221, 2010.
Ahlquist, P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296, 1270-1273, 2002.
Ahlquist, P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Reviews Microbiology 4, 371-382, 2006.
Baltimore, D. Expression of animal virus genomes. Bacteriological Reviews 35, 235-241, 1971.
Bancroft, J. B. The self-assembly of spherical plant viruses. Advances in Virus Research 16, 99-134, 1970.
Banerjee, M., Speir, J. A., Kwan, M. H., Huang, R., Aryanpur, P. P., Bothner, B., and Johnson, J. E. Structure and function of a genetically engineered mimic of a nonenveloped virus entry intermediate. Journal of Virology 84, 4737-4746, 2010.
Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R., and Klug, A. Protein disk of tobacco mosaic-virus at 2.8 Å resolution showing interactions within and between subunits. Nature 276, 362-368, 1978.
Bubeck, D., Filman, D. J., and Hogle, J. M. Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nature Structural and Molecular Biology 12, 615-618, 2005.
Caspar, D. L. D. and Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia on Quantitative Biology 27, 1-24, 1962.
Chao, J. A., Lee, J. H., Chapados, B. R., Debler, E. W., Schneemann, A., and Williamson, J. R. Dual modes of RNA-silencing suppression by flock house virus protein B2. Nature Structural and Molecular Biology 12, 952-957, 2005.
Chelvanayagam, G., Heringa, J., and Argos, P. Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. Journal of Molecular Biology 228, 220-242, 1992.
Chen, C. L. and Qiu, G. H. The long and bumpy journey: Taiwan's aquaculture development and management. Marine Policy 48, 152-161, 2014.
Chen, R., Neill, J. D., Estes, M. K., and Prasad, B. V. V. X-ray structure of a native calicivirus: Structural insights into antigenic diversity and host specificity. Proceedings of the National Academy of Sciences of the United States of America 103, 8048-8053, 2006.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D-Biological Crystallography 66, 12-21, 2010.
Cheng, S. S. and Brooks, C. L. Viral capsid proteins are segregated in structural fold space. PLoS Computational Biology 9, e1002905, 2013.
Chi, S. C., Hu, W. W., and Lo, B. J. Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 22, 173-182, 1999.
Choi, Y. R., Kim, H. J., Lee, J. Y., Kang, H. A., and Kim, H. J. Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expression and Purification 89, 162-168, 2013.
Corbeil, S., Kurath, G., and LaPatra, S. E. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunisation. Fish and Shellfish Immunology 10, 711-723, 2000.
Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B., and Rey, F. A. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120, 761-772, 2005.
Cowtan, K. DM: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34-38, 1994.
Crane, M. and Hyatt, A. Viruses of fish: an overview of significant pathogens. Viruses 3, 2025-2046, 2011.
Desmet, C. J. and Ishii, K. J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology 12, 479-491, 2012.
Dong, X. F., Natarajan, P., Tihova, M., Johnson, J. E., and Schneemann, A. Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. Journal of Virology 72, 6024-6033, 1998.
Dye, B. T., Miller, D. J., and Ahlquist, P. In vivo self-interaction of nodavirus RNA replicase protein A revealed by fluorescence resonance energy transfer. Journal of Virology 79, 8909-8919, 2005.
Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Features and development of Coot. Acta Crystallographica Section D-Biological Crystallography 66, 486-501, 2010.
Fisher, A. J. and Johnson, J. E. Ordered duplex rna controls capsid architecture in an icosahedral animal virus. Nature 361, 176-179, 1993.
Gedvilaite, A., Frommel, C., Sasnauskas, K., Micheel, B., Ozel, M., Behrsing, O., Staniulis, J., Jandrig, B., Scherneck, S., and Ulrich, R. Formation of immunogenic virus-like particles by inserting epitopes into surface-exposed regions of hamster polyomavirus major capsid protein. Virology 273, 21-35, 2000.
Guo, Y. R., Hryc, C. F., Jakana, J., Jiang, H., Wang, D., Chiu, W., Zhong, W., and Tao, Y. J. Crystal structure of a nematode-infecting virus. Proceedings of the National Academy of Sciences of the United States of America 111, 12781-12786, 2014.
Guu, T. S. Y., Liu, Z., Ye, Q. Z., Mata, D. A., Li, K. P., Yin, C. C., Zhang, J. Q., and Tao, Y. J. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proceedings of the National Academy of Sciences of the United States of America 106, 12992-12997, 2009.
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K., and Bricogne, G. Tomato bushy stunt virus at 2.9 Å resolution. Nature 276, 368-373, 1978.
Hogle, J., Kirchhausen, T., and Harrison, S. C. Divalent-cation sites in tomato bushy stunt virus - difference maps at 2.9 Å resolution. Journal of Molecular Biology 171, 95-100, 1983.
Hogle, J. M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annual Review of Microbiology 56, 677-702, 2002.
Hogle, J. M., Chow, M., and Filman, D. J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358-1365, 1985.
Holm, L. and Sander, C. Dali - A Network Tool for Protein-Structure Comparison. Trends in Biochemical Sciences 20, 478-480, 1995.
Ito, Y., Okinaka, Y., Mori, K. I., Sugaya, T., Nishioka, T., Oka, M., and Nakai, T. Variable region of betanodavirus RNA2 is sufficient to determine host specificity. Diseases of Aquatic Organisms 79, 199-205, 2008.
Johnson, K. N., Johnson, K. L., Dasgupta, R., Gratsch, T., and Ball, L. A. Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. Journal of General Virology 82, 1855-1866, 2001.
Kleywegt, G. J. and Jones, T. A. Experimental assessment of differences between related protein crystal structures. Acta Crystallographica Section D-Biological Crystallography 55, 941-944, 1999.
Kuo, H. C., Wang, T. Y., Chen, P. P., Chen, Y. M., Chuang, H. C., and Chen, T. Y. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture. Journal of Clinical Microbiology 49, 1090-1096, 2011.
Kushnir, N., Streatfield, S. J., and Yusibov, V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 31, 58-83, 2012.
Lafferty, K. D., Harvell, C. D., Conrad, J. M., Friedman, C. S., Kent, M. L., Kuris, A. M., Powell, E. N., Rondeau, D., and Saksida, S. M. Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science 7, 471-496, 2015.
Langer, G., Cohen, S. X., Lamzin, V. S., and Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP. Nature Protocols 3, 1171-1179, 2008.
Lee, C. D., Sun, H. C., Hu, S. M., Chiu, C. F., Homhuan, A., Liang, S. M., Leng, C. H., and Wang, T. F. An improved SUMO fusion protein system for effective production of native proteins. Protein Science 17, 1241-1248 2008.
Li, M., Kakani, K., Katpally, U., Johnson, S., Rochon, D., and Smith, T. J. Atomic structure of cucumber necrosis virus and the role of the capsid in vector transmission. Journal of Virology 87, 12166-12175, 2013.
Li, Y., Lu, J. F., Han, Y. H., Fan, X. X., and Ding, S. W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231-234, 2013.
Liang, T. J. RNA interference functions as an antiviral immunity mechanism in mammals. Nature Medicine 19, 869-878, 2013.
Lu, R., Maduro, M., Li, F., Li, H. W., Broitman-Maduro, G., Li, W. X., and Ding, S. W. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040-1043, 2005.
Mannige, R. V. and Brooks, C. L. Periodic table of virus capsids: implications for natural selection and design. PloS One 5, e9423, 2010.
Mathieu, M., Petitpas, I., Navaza, J., Lepault, J., Kohli, E., Pothier, P., Prasad, B. V. V., Cohen, J., and Rey, F. A. Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. The European Molecular Biology Organization Journal 20, 1485-1497, 2001.
Matthews, B. W. Solvent content of protein crystals. Journal of Molecular Biology 33, 491-497, 1968.
Mccoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. Phaser crystallographic software. Journal of Applied Crystallography 40, 658-674, 2007.
Miller, D. J., Schwartz, M. D., and Ahlquist, P. Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. Journal of Virology 75, 11664-11676, 2001.
Miller, D. J. and Ahlquist, P. Flock house virus RNA polymerase is a transmembrane protein with amino-terminal sequences sufficient for mitochondrial localization and membrane insertion. Journal of Virology 76, 9856-9867, 2002.
Morgunova, E. Y., Dauter, Z., Fry, E., Stuart, D. I., Stelmashchuk, V. Y., Mikhailov, A. M., Wilson, K. S., and Vainshtein, B. K. The atomic-structure of carnation mottle virus capsid protein. Federation of European Biochemical Societies Letters 338, 267-271, 1994.
Munday, B. L., Kwang, J., and Moody, N. Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142, 2002.
Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D-Biological Crystallography 67, 355-367, 2011.
Neu, U., Khan, Z. M., Schuch, B., Palma, A. S., Liu, Y., Pawlita, M., Ten, F. Z., and Stehle, T. A Structure-guided mutation in the major capsid protein retargets BK polyomavirus. PLoS Pathogens 9, e1003714, 2013.
Nicholls, R. A., Long, F., and Murshudov, G. N. Low-resolution refinement tools in REFMAC5. Acta Crystallographica Section D-Biological Crystallography 68, 404-417, 2012.
Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Applied and Environmental Microbiology 63, 1633-1636, 1997.
Olia, A. S., Prevelige, P. E., Jr., Johnson, J. E., and Cingolani, G. Three-dimensional structure of a viral genome-delivery portal vertex. Nature Structural and Molecular Biology 18, 597-603, 2011.
Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326, 1997.
Ou, M. C., Chen, Y. M., Jeng, M. F., Chu, C. J., Yang, H. L., and Chen, T. Y. Identification of critical residues in nervous necrosis virus B2 for dsRNA-binding and RNAi-inhibiting activity through by bioinformatic analysis and mutagenesis. Biochemical and Biophysical Research Communications 361, 634-640, 2007.
Pappachan, A., Subashchandrabose, C., Satheshkumar, P. S., Savithri, H. S., and Murthy, M. R. N. Structure of recombinant capsids formed by the beta-annulus deletion mutant - rCP (delta 48-59) of Sesbania mosaic virus. Virology 375, 190-196, 2008.
Pappachan, A., Chinnathambi, S., Satheshkumar, P. S., Savithri, H. S., and Murthy, M. R. N. A single point mutation disrupts the capsid assembly in Sesbania Mosaic Virus resulting in a stable isolated dimer. Virology 392, 215-221, 2009.
Poranen, M. M., Daugelavicius, R., and Bamford, D. H. Common principles in viral entry. Annual Review of Microbiology 56, 521-538, 2002.
Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallographica Section D-Biological Crystallography 59, 1131-1137, 2003.
Prasad, B. V. V. and Schmid, M. F. Principles of virus structural organization. Advances in Experimental Medicine and Biology 726, 17-47, 2012.
Purcell, M. K., Nichols, K. M., Winton, J. R., Kurath, G., Thorgaard, G. H., Wheeler, P., Hansen, J. D., Herwig, R. P., and Park, L. K. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Molecular Immunology 43, 2089-2106, 2006.
Qu, C. X., Liljas, L., Opalka, N., Brugidou, C., Yeager, M., Beachy, R. N., Fauquet, C. M., Johnson, J. E., and Lin, T. W. 3D domain swapping modulates the stability of members of an icosahedral virus group. Structure 8, 1095-1103, 2000.
Ramqvist, T., Andreasson, K., and Dalianis, T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opinion on Biological Therapy 7, 997-1007, 2007.
Rayment, I. Molecular replacement method at low resolution - optimum strategy and intrinsic limitations as determined by calculations on icosahedral virus models. Acta Crystallographica Section A 39, 102-116, 1983.
Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., and Skehel, J. J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45-49, 2006.
Sangita, V., Lokesh, G. L., Satheshkumar, P. S., Vijay, C. S., Saravanan, V., Savithri, H. S., and Murthy, M. R. N. T=1 capsid structures of Sesbania mosaic virus coat protein mutants: Determinants of T=3 and T=1 capsid assembly. Journal of Molecular Biology 342, 987-999, 2004.
Sangita, V., Lokesh, G. L., Satheshkumar, P. S., Saravanan, V., Vijay, C. S., Savithri, H. S., and Murthy, M. R. N. Structural studies on recombinant T=3 capsids of sesbania mosaic virus coat protein mutants. Acta Crystallographica Section D-Biological Crystallography 61, 1402-1405, 2005.
Sangita, V., Satheshkumar, P. S., Savithri, H. S., and Murthy, M. R. N. Structure of a mutant T=1 capsid of Sesbania mosaic virus: role of water molecules in capsid architecture and integrity. Acta Crystallographica Section D-Biological Crystallography 61, 1406-1412, 2005.
Satheshkumar, P. S., Lokesh, G. L., Sangita, V., Saravanan, V., Vijay, C. S., Murthy, M. R. N., and Savithri, H. S. Role of metal ion-mediated interactions in the assembly and stability of sesbania mosaic virus T=3 and T=1 capsids. Journal of Molecular Biology 342, 1001-1014, 2004.
Satheshkumar, P. S., Lokesh, G. L., Murthy, M. R. N., and Savithri, H. S. The role of arginine-rich motif and beta-annulus in the assembly and stability of Sesbania mosaic virus capsids. Journal of Molecular Biology 353, 447-458, 2005.
Schneemann, A., Zhong, W. D., Gallagher, T. M., and Rueckert, R. R. Maturation cleavage required for infectivity of a nodavirus. Journal of Virology 66, 6728-6734, 1992.
Schneemann, A. The structural and functional role of RNA in icosahedral virus assembly. Annual Review of Microbiology 60, 51-67, 2006.
Schulze, A., Gripon, P., and Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759-1768, 2007.
Schuster, S., Zirkel, F., Kurth, A., van Cleef, K. W. R., Drosten, C., van Rij, R. P., and Junglen, S. A unique nodavirus with novel features: mosinovirus expresses two subgenomic rnas, a capsid gene of unknown origin, and a suppressor of the antiviral rna interference pathway. Journal of Virology 88, 13447-13459, 2014.
Silva, A. M. and Rossmann, M. G. Refined structure of southern bean mosaic-virus at 2.9 Å resolution. Journal of Molecular Biology 197, 69-87, 1987.
Simpson, A. A., Tao, Y., Leiman, P. G., Badasso, M. O., He, Y., Jardine, P. J., Olson, N. H., Morais, M. C., Grimes, S., Anderson, D. L., Baker, T. S., and Rossmann, M. G. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745-750, 2000.
Speir, J. A., Munshi, S., Wang, G. J., Baker, T. S., and Johnson, J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryoelectron microscopy. Structure 3, 63-78, 1995.
Stein, P. E., Boodhoo, A., Armstrong, G. D., Cockle, S. A., Klein, M. H., and Read, R. J. The crystal-structure of pertussis toxin. Structure 2, 45-57, 1994.
Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., and Wilson, I. A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410, 2006.
Sudheesh, P. S., Al-Ghabshi, A., Al-Mazrooei, N., and Al-Habsi, S. Comparative pathogenomics of bacteria causing infectious diseases in fish. International Journal of Evolutionary Biology 2012, 457264, 2012.
Taka, J., Naitow, H., Yoshimura, M., Miyazaki, N., Nakagawa, A., and Tsukihara, T. Ab initio crystal structure determination of spherical viruses that exhibit a centrosymmetric location in the unit cell. Acta Crystallographica Section D-Biological Crystallography 61, 1099-1106, 2005.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739, 2011.
Tang, J. H., Johnson, J. M., Dryden, K. A., Young, M. J., Zlotnick, A., and Johnson, J. E. EMAN2: an extensible image processing suite for electron microscopy. Journal of Structural Biology 154, 59-67, 2006.
Tang, K. F., Pantoja, C. R., Redman, R. M., Navarro, S. A., and Lightner, D. V. Ultrastructural and sequence characterization of Penaeus vannamei nodavirus (PvNV) from Belize. Diseases of Aquatic Organisms 94, 179-187, 2011.
Tang, L., Johnson, K. N., Ball, L. A., Lin, T. W., Yeager, M., and Johnson, J. E. The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nature Structural Biology 8, 77-83, 2001.
Tang, L., Lin, C. S., Krishna, N. K., Yeager, M., Schneemann, A., and Johnson, J. E. Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. Journal of Virology 76, 6370-6375, 2002.
Thiery, R., Cozien, J., de Boisseson, C., Kerbart-Boscher, S., and Nevarez, L. Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. Journal of General Virology 85, 3079-3087, 2004.
Toranzo, A. E., Magarinos, B., and Romalde, J. L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246, 37-61, 2005.
Tsai, B. Penetration of nonenveloped viruses into the cytoplasm. Annual Review of Cell and Developmental Biology 23, 23-43, 2007.
Vagin, A. and Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallographica Section D-Biological Crystallography 66, 22-25, 2010.
Wang, C. H., Hsu, C. H., Wu, Y. M., Luo, Y. C., Tu, M. H., Chang, W. H., Cheng, R. H., and Lin, C. S. Roles of cysteines Cys115 and Cys201 in the assembly and thermostability of grouper betanodavirus particles. Virus Genes 41, 73-80, 2010.
Wery, J. P., Reddy, V. S., Hosur, M. V., and Johnson, J. E. The refined three-dimensional structure of an insect virus at 2.8 Å resolution. Journal of Molecular Biology 235, 565-586, 1994.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D-Biological Crystallography 67, 235-242, 2011.
Wu, Y. M., Hsu, C. H., Wang, C. H., Liu, W. T., Chang, W. H., and Lin, C. S. Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Archives of Virology. 153, 1633-1642, 2008.
Yamashita, T., Mori, Y., Miyazaki, N., Cheng, R. H., Yoshimura, M., Unno, H., Shima, R., Moriishi, K., Tsukihara, T., Li, T. C., Takeda, N., Miyamura, T., and Matsuura, Y. Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proceedings of the National Academy of Sciences of the United States of America 106, 12986-12991, 2009.
Yoshikoshi, K. and Inoue, K. Viral nervous necrosis in hatchery-reared larvae and juveniles of japanese parrotfish, oplegnathus-fasciatus (Temminck and Schlegel). Journal of Fish Diseases 13, 69-77, 1990.
Zhao, Q., Chen, W., Chen, Y., Zhang, L., Zhang, J., and Zhang, Z. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. Bioconjugate Chemistry 22, 346-352, 2011.
Zhao, Q., Li, S., Yu, H., Xia, N., and Modis, Y. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends in Biotechnology 31, 654-663, 2013.