| 研究生: |
許智泰 Hsu, Chih-Tai |
|---|---|
| 論文名稱: |
具滑移邊界之半平面異向性材料內含裂紋之數值分析 |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 格林函數 、滑移邊界 |
| 外文關鍵詞: | Green's Functions, Stroh, Slippery |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分析具滑移邊界之半平面異向性材料內含裂紋的問題,並以廣義異向性材料的Eshelby-Stroh公式為基礎,推導具滑移邊界之半平面之奇異積分方程組。
奇異積分方程組的數值結果,分別以正交異向性材料的裂紋面上承受均佈正向壓曳力和均佈剪曳力的應力強度因子表示(以 與 表示);文中討論了材料的異向性程度、裂紋的方向和材料角度對應力強度因子的影響,並比較滑移邊界(slippery boundary)和鎖固邊界(clamped boundary)的應力強度因子。
none
[1]Bowie, O.L., Solutions of Plane Crack Problems By Mapping Technique, in:
G. C. Sih, ed., Methods of Analysis and Solutions of Crack Problems,
(Noordhoff International Publishers, Leyden), 1-55, 1973.
[2]Beghini, M. Bertini, L. and Fortanari, V., Stress Intensity Factors for an
Inclined Edge Crack in a Semiplane, Engrg. Fracture Mechanics 62 , 607-
613,1999.
[3]Chen, Y. Z., A Mixed Boundary Problem for a Finite Internally Cracked
Plate. Engrg. Fracture Mech 14,4,741-751,1981.
[4]Erdgogan, F. and Arin, K.A., A Half Plane and a Strip with an Arbitrarily
Located Crack. Int. J. Fracture 11,191-204,1975.
[5]Erdgogan, F., Stress Intensity Factors. ASME J. Appl. Mech 50,992-1002,
1983
[6]Gerasoulis, A., The Use of Piecewise Quadratic Polynomials for the Solution
of Singular Integral Equations of Cauchy Type.Comput.Math.WithApplications.
8,15-22, 1982.
[7]Higashida Y. and Kamada, K., Stress Fields around a Crack Lying Parallel to
a Free Surface. Int. J. Fracture 19,39-52,1982.
[8]Hasebe, N. and Qian, J., Fundamental Solutions for Half Plane with an
Oblique Edge Crack. Engrg. Anal. with Boundary Elements 17, 263-267, 1996.
[9]Isida, M., On the Determination of Stress Intensity Factors for Some Common
Structural Problems. Engrg. Fracture Mech 2,674-675, 1970.
[10]Isida, M., Effect of Width and Length on Stress Intensity Factors of
Internally Cracked Plate with Various Boundary Conditions. Int. J.
Fracture Mech 7,3, ,301-316, 1971.
[11]Liaw, B.M. and Kamel, M., The Stress Intensity Factors of An Internal
Crack in An Anisotropic Solid Disc Under General Loading. Int. J. Engrg.
Sci 8,1053-1065, 1990.
[12]Sung, J. C. and Liou, J. Y., An Internal Crack in a Half-Plane Solid with
Clamped Boundary. Comput. Methods Appl. Engrg 121,361-372, 1994.
[13]Sung, J. C. and Liou, J. Y., Analysis of a Crack Embedded in a Linear
Elastic Half-Plane Solid. ASME J. Appl. Mech 62,78-86,1995.
[14]Ting, T. C. T., Image Singularities of Green’s Functions for Anisotropic
Elastic Half-Spaces and Bimaterials. Q. J.Mech. Appl. Math 45,119-139,
1992.
[15]Ting, T. C. T., and D.M. Barnett, Image Force on Line Dislocations in
Anisotropic Elastic Half-Spaces with a Fixed Boundary. Int. J. Solids
Struc. 30,3,313-323, 1993.
[16]Ting, T. C. T. and Wang, M., Generalized Stroh Formalism for Anisotropic
Elasticity for General Boundary Conditions. ACTA Mech. Sinica 25,3,283-
301, 1993.
[17]Ting, T. C. T., Anisotropic Elasticity ; Theory and Applications, Oxford
University Press, Inc, 1996.
[18]Zang, W. and Gudmundson, P., An Integral Equation Method for Piece-Wise
Smooth Cracks in an Elastic Half-Plane. Engrg. Fracture Mech 32,889-897,
1989.