簡易檢索 / 詳目顯示

研究生: 許智泰
Hsu, Chih-Tai
論文名稱: 具滑移邊界之半平面異向性材料內含裂紋之數值分析
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 56
中文關鍵詞: 格林函數滑移邊界
外文關鍵詞: Green's Functions, Stroh, Slippery
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分析具滑移邊界之半平面異向性材料內含裂紋的問題,並以廣義異向性材料的Eshelby-Stroh公式為基礎,推導具滑移邊界之半平面之奇異積分方程組。
    奇異積分方程組的數值結果,分別以正交異向性材料的裂紋面上承受均佈正向壓曳力和均佈剪曳力的應力強度因子表示(以 與 表示);文中討論了材料的異向性程度、裂紋的方向和材料角度對應力強度因子的影響,並比較滑移邊界(slippery boundary)和鎖固邊界(clamped boundary)的應力強度因子。

    none

    摘要…………………………………………………………………………I 誌謝…………………………………………………………………………II 目錄…………………………………………………………………………III 圖目錄………………………………………………………………………V 第一章 緒論…………………………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………1 1.3 本文綱要……………………………………………………2 第二章 基本公式……………………………………………………………4 2.1 Stroh基本公式………………………………………………4 2.2 全平面之格林函數(Green’s Functions)………………12 第三章 問題推導……………………………………………………………15 3.1 半平面之格林函數(Green’s Functions)………………16 3.2具滑移邊界半平面之格林函數(Green’s Functions)……17 3.3 奇異積分方程組之推導………………………………………20 3.4 應力強度因子…………………………………………………21 第四章 數值方法………………………………………………………………24 第五章 數值結果與討論………………………………………………………27 5.1 單一差排作用下的半平面表面上的應力場…………………27 5.2 具裂紋的異向性材料之應力強度因子………………………28 5.2.1水平裂紋深度之影響……………………………………………………29 5.2.2水平裂紋材料角度之影響……………………………29 5.2.3垂直裂紋深度之影響…………………………………30 5.2.4垂直裂紋材料角度之影響……………………………30 5.2.5傾斜裂紋………………………………………………32 第六章 結論……………………………………………………………………33 參考文獻………………………………………………………………………55 自述

    [1]Bowie, O.L., Solutions of Plane Crack Problems By Mapping Technique, in:
    G. C. Sih, ed., Methods of Analysis and Solutions of Crack Problems,
    (Noordhoff International Publishers, Leyden), 1-55, 1973.
    [2]Beghini, M. Bertini, L. and Fortanari, V., Stress Intensity Factors for an
    Inclined Edge Crack in a Semiplane, Engrg. Fracture Mechanics 62 , 607-
    613,1999.
    [3]Chen, Y. Z., A Mixed Boundary Problem for a Finite Internally Cracked
    Plate. Engrg. Fracture Mech 14,4,741-751,1981.
    [4]Erdgogan, F. and Arin, K.A., A Half Plane and a Strip with an Arbitrarily
    Located Crack. Int. J. Fracture 11,191-204,1975.
    [5]Erdgogan, F., Stress Intensity Factors. ASME J. Appl. Mech 50,992-1002,
    1983
    [6]Gerasoulis, A., The Use of Piecewise Quadratic Polynomials for the Solution
    of Singular Integral Equations of Cauchy Type.Comput.Math.WithApplications.
    8,15-22, 1982.
    [7]Higashida Y. and Kamada, K., Stress Fields around a Crack Lying Parallel to
    a Free Surface. Int. J. Fracture 19,39-52,1982.
    [8]Hasebe, N. and Qian, J., Fundamental Solutions for Half Plane with an
    Oblique Edge Crack. Engrg. Anal. with Boundary Elements 17, 263-267, 1996.
    [9]Isida, M., On the Determination of Stress Intensity Factors for Some Common
    Structural Problems. Engrg. Fracture Mech 2,674-675, 1970.
    [10]Isida, M., Effect of Width and Length on Stress Intensity Factors of
    Internally Cracked Plate with Various Boundary Conditions. Int. J.
    Fracture Mech 7,3, ,301-316, 1971.
    [11]Liaw, B.M. and Kamel, M., The Stress Intensity Factors of An Internal
    Crack in An Anisotropic Solid Disc Under General Loading. Int. J. Engrg.
    Sci 8,1053-1065, 1990.
    [12]Sung, J. C. and Liou, J. Y., An Internal Crack in a Half-Plane Solid with
    Clamped Boundary. Comput. Methods Appl. Engrg 121,361-372, 1994.
    [13]Sung, J. C. and Liou, J. Y., Analysis of a Crack Embedded in a Linear
    Elastic Half-Plane Solid. ASME J. Appl. Mech 62,78-86,1995.
    [14]Ting, T. C. T., Image Singularities of Green’s Functions for Anisotropic
    Elastic Half-Spaces and Bimaterials. Q. J.Mech. Appl. Math 45,119-139,
    1992.
    [15]Ting, T. C. T., and D.M. Barnett, Image Force on Line Dislocations in
    Anisotropic Elastic Half-Spaces with a Fixed Boundary. Int. J. Solids
    Struc. 30,3,313-323, 1993.
    [16]Ting, T. C. T. and Wang, M., Generalized Stroh Formalism for Anisotropic
    Elasticity for General Boundary Conditions. ACTA Mech. Sinica 25,3,283-
    301, 1993.
    [17]Ting, T. C. T., Anisotropic Elasticity ; Theory and Applications, Oxford
    University Press, Inc, 1996.
    [18]Zang, W. and Gudmundson, P., An Integral Equation Method for Piece-Wise
    Smooth Cracks in an Elastic Half-Plane. Engrg. Fracture Mech 32,889-897,
    1989.

    下載圖示 校內:立即公開
    校外:2005-07-27公開
    QR CODE