| 研究生: |
石忠憲 Shih, Chung-Hsien |
|---|---|
| 論文名稱: |
翼尖帆應用於水平軸風機數值模擬 Numerical Simulation of the Application of Winglet on Horizontal Axis Wind Turbine |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 水平軸風機 、翼尖帆 、Ansys CFX 、剪應力傳輸 、分離渦流模擬 |
| 外文關鍵詞: | HAWT, Winglet, Ansys CFX, SST, DES |
| 相關次數: | 點閱:110 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用數值方法模擬額定風速下水平軸風機葉片的流場及物理性質分析。吾人使用商業套裝軟體ANSYS CFX高階解析方法,葉片在靜止條件下及旋轉條件下求解非穩態不可壓縮納維-斯托克斯方程式(Navier-Stokes equations)。紊流模型選擇剪應力傳輸SST(Shear Stress Transport) 與分離渦流模擬法DES(Detached Eddy Simulation)兩種方法或合在一起來模擬分析。計算格點由ANSYS ICEM CFD 產生非結構性網格,採用混合型網格,於葉片模型周圍建立棱柱型網格(Prism Mesh)來模擬邊界層黏性流場,其他計算領域則採用四面體網格(Tetrahedron Mesh )。
首先選了幾個簡單的例子:圓柱繞流、NACA0012翼剖面之流場模擬和NREL-5MW 風機的葉片流場模擬,藉此了解邊界設定、紊流模組及網格結構對於流場的影響,並與相關的論文資料來做數值的比對。再來使用由美國萊特州立大學機械材料工程科系教授Zifeng Yang所設計製造的水平軸風機葉片為主要探討對象,並以其為參考標準,針對葉片頂端加裝Zifeng Yang所設計之翼尖帆(Winglet)來進行模擬分析。靜止條件下,模擬有無翼尖帆葉片的流場壓力、流場速度及受力情形。旋轉條件下,模擬有無翼尖帆及改變翼尖帆長度之葉片的流場壓力、流場速度、發電功率及產生噪音大小。對其模擬結果進行分析,並討論翼尖帆對於葉片氣動力特性及流場之影響。
This research uses commercial software, ANSYS CFX, to simulate the flow-field and to investigate physical property for the blade of horizontal axis wind turbine (HAWT) under normal wind speed. In the ANSYS CFX, we use a high resolution scheme and unsteady incompressible Navier - Stokes equations to simulate the flow field of the HAWT. The grid system is unstructured mesh which is generated by ANSYS ICEM CFD. The turbulence model is shear stress transport (SST) and detached eddy simulation (DES) .
The investigated blade is designed by Zifeng Yang. A winglet in the tip of the blade is used to study it effects on the wind power efficiency and noise. Under stationary condition, the blade with or without winglet is simulated. Under rotating condition, the blade with winglet, without winglet, and with length-changed winglet are simulated for pressure, velocity, power efficiency, and noise. The final results show the winglet can reduce pressure in the flow field and promote power efficiency, but it is only difference on the noise level.
[1] Ch. Brucker, Dual-camera DPIV for flow studies past artificial heart valves, Experiment in Fluids, Vol. 22, pp. 496 -506, 1997.
[2] M. Gaunaa and J. Johansen, Determination of the maximum aerodynamic efficiency of wind turbine rotors with winglets, Journal of Physics, 2007.
[3] M. A. Potsdam and D. J. Mavriplis, Unstructured mesh CFD aerodynamic analysis of the NREL Phase VI Rotor, 47th AIAA Aerospace Sciences Meeting, 2009.
[4] P. Saravanan, K. M. Parammasivam and S. S. Rajan, Experimental investigation on small horizontal axis wind turbine rotor using winglets, Journal of Applied Science and Engineering, Vol. 16, pp. 159-164, 2013.
[5] J. J. Chattot, Effects of blade tip modifications on wind turbine performance using vortex model, Computers & Fluids, Vol. 38, pp. 1405-1410, 2009.
[6] J. Johansen, and N. N. Sørensen, Aerodynamic investigation of winglets on wind turbine blades using CFD, Risø-R-1543, 2006.
[7] N. S. Tachos, A. E. Filios, and D. PMargaris, A comparative numerical study of four turbulence models for the prediction of horizontal axis wind turbine flow, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, pp. 1973-1979, 2010.
[8] Y. Li, K. J. Paika, T. Xing, and P. M. Carrica, Dynamic overset CFD simulations of wind turbine aerodynamics, Renewable Energy, Vol. 37, pp. 285-298, 2012.
[9] E. Son, H. Kim, H. Kim, W. Choi, and S. Lee, Integrated numerical method for the prediction of wind turbine noise and the long range propagation, Current Applied Physics, Vol. 10, pp. S316-S319, 2010.
[10] S. Oerlemans, M. Fisher, T. Maeder and K. Kogler, Reduction of wind turbine noise using optimized airfoils and trailing-edge Serrations, AIAA Journal, Vol. 47, pp. 1470-1481, 2009.
[11] W. J. M. Rankine, On the mathematical theory of combined streams, Proceedings of the Royal Society of London 19, pp. 90-94, 1870.
[12] 新高能源科技股份有限公司, “http://www.hi-vawt.com.tw”.
[13] 牛山泉、三野正洋合著,林輝政審定,小型風車手冊,臺大出版中心,2010
[14] A. Betz, Introduction to the theory of flow machines, Oxford: Pergamon Press, 1966.
[15] A. L. Rogers, J. F. Manwell, and S. Wright, Wind turbine acoustic noise, Renewable Energy Research Laboratory, 2006.
[16] S. Wagner, R. Bareib and G. Guidati, Wind turbine noise, Springer, 1996.
[17] 紀兵兵、陳金瓶,ANSYS ICEM CFD網格劃分技術實例詳解,中國水利水電出版社,2011
[18] ANSYS CFX Reference Guide, ANSYS , Inc.2013.
[19] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, Vol. 32, pp. 1598-1605, 1994.
[20] 陳廷彰,風扇噪音分析與有孔平板受風扇噪音激振的聲場分析, 中央大學碩士論文,2008
[21] 李天龍,以FFT為架構建立之諧波參數分析,中山大學碩士論文, 1999
[22] B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[23] X. Y. He, and G. Doolen, Lattice Boltzmann Method on curvilinear coordinates system : flow around a circular cylinder, Journal of Computational Physics, Vol. 134, pp. 306-315, 1997.
[24] A. L. F. Lima E Silva, A. Silveira-Neto, and J. J. R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, Vol. 189, pp. 351-370, 2003.
[25] D. N. Srinath and S. Mittal, Optimal airfoil shapes for low Reynolds number flows, International Journal for Numerical Methods in Fluids, Vol. 21, pp. 355-381, 2009.
[26] E. J. Schroeder, Low Reynolds number flow validation using computational fluid dynamics with application to micro-air vehicles, Department of Aerospace Engineering, 2005.
[27] Y. Bazilevs1, M. C. Hsu1, I. Akkerman1, S. Wright, K. Takizawa, B. Henicke, T. Spielman and T. E. Tezduyar, 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, International Journal for Numerical Methods in Fluids, Vol. 65, pp. 207-235, 2011.
[28] 牛山泉著,林輝政審定,基礎風力能源,國立澎湖科技大學出版,2010
[29] 蔡元智,陣風條件下垂直軸風力發電機之模擬,成功大學碩士論文,2013