簡易檢索 / 詳目顯示

研究生: 曾翊洲
Zeng, Yi-Zhou
論文名稱: 離層酸與糖類對阿拉伯芥葉部澱粉水解之交互作用
The study of the interaction between ABA and sugar on the leaf starch degradation in Arabidopsis thaliana
指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 54
中文關鍵詞: 暫存性澱粉阿拉伯芥澱粉水解離層酸
外文關鍵詞: transitory starch, Arabidopsis, ABA, starch degradation
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   澱粉(starch)為葡葡糖(glucose)所構成之巨分子,為植物體內碳水化合物最主要的儲存形式。位於葉綠體中的澱粉於白天堆積,晚上水解,亦稱為暫存性澱粉(transitory starch),但目前對於暫存性澱粉的代謝調控機制所知仍少。糖類(sugar)可提供能量促進植物生長;但高濃度的糖類卻會抑制植物生長並誘導澱粉合成基因ApL3(AGPase large subunit 3)表現,造成澱粉堆積。目前研究發現,糖類的訊息傳遞可能與植物荷爾蒙離層酸有關。離層酸已知在植物生長發育上扮演重要角色,但其和澱粉代謝的關聯卻仍未清楚。本篇研究以阿拉伯芥(Arabidopsis thaliana)為材料,探討離層酸與糖類在植物生長發育及澱粉代謝上之交互作用。首先在不同濃度的糖類環境中,比較野生型阿拉伯芥的植株根長與葉片內澱粉堆積之情形,發現於高濃度糖類處理下的植株,其根長較未經糖類處理者短,且澱粉含量亦較高,得知高濃度糖類能抑制植物根部延長,並促進澱粉堆積。接著以離層酸處理植株並分析其根長與澱粉含量,發現以離層酸處理後,植株之根長較未經處理時短,而澱粉含量減少,顯示離層酸抑制根部生長,但促進澱粉水解;同時以高濃度糖類及離層酸處理時,發現植株根長較高濃度糖類單獨處理時長,且澱粉含量亦較低,顯示離層酸可回復由高濃度糖類所造成的生長抑制,並促進澱粉水解。接著以反轉錄聚合酶連鎖反應(RT-PCR, reverse transcription-PCR)偵測澱粉水解相關基因之表現情形,發現在離層酸處理下,SEX1(STARCH EXCESS 1)表現量明顯上升,顯示離層酸能誘導SEX1基因表現,促進澱粉水解。最後,比較離層酸對於澱粉堆積突變株體內澱粉含量的變化,發現sex1突變株中,離層酸無法促進澱粉水解,該結果顯示SEX1為離層酸促進澱粉水解所必需。綜合以上結果,得知離層酸與糖類在植物生長及澱粉水解上,扮演相拮抗之角色;離層酸藉由誘導SEX1的表現促進澱粉水解。

      Starch, composed of glucose residues exclusively, is the major storage carbohydrate in higher plants. Transitory starch accumulates in chloroplasts during the day and is degraded at night. Up to date, there is little known about the regulation of transitory starch metabolism. Sugar is essential to plant growth, however, high sugar levels resulted in a constraint on plant growth and starch degradation. The accumulation of starch was accompanied by induction at the expression of a starch biosynthesis gene, ApL3 (AGPase large subunit 3). Recent studies demonstrated that sugar signaling was tightly coupled with phytohormone abscisic acid (ABA). Although ABA is well known in stress adaptation, the role of ABA in starch degradation was remains to be elucidated. In this study, we investigated the interaction between ABA and sugar on starch metabolism in Arabidopsis. In the presence of high sugar levels, wild-type seedlings exhibited the shorter root and starch-excess phenotypes. These results revealed that high sugar levels had negative effects on root elongation and starch degradation. In contrast, exogenous ABA inhibited root elongation but promoted starch degradation, suggesting that ABA had a positive role in the inhibition of root growth and starch degradation. In addition, exogenous ABA was resistant to the high sugar levels, suggesting that the antagonistic interaction between high sugar levels and ABA. RT-PCR analysis showed that the starch degradation-related gene, SEX1 (STARCH EXCESS 1), was induced by ABA and the starch contents of sex1 mutant were not affected by ABA, revealing that SEX1 was necessary for ABA-mediated starch degradation. In summary, ABA has the antagonistic affect on sugar-induced starch accumulation and SEX1 is essential for ABA-mediated starch degradation.

    中文摘要 ………………………………………………..……….……......……....i 英文摘要……..…………………………………………………….……….……....ii 誌謝…………...........………………………………………………………............iii 目錄………………………………………………………………………….…..…iv 表目錄……………………………………………………………….………..…….v 圖目錄 …………………………………………………………….…………...…vii 縮寫字對照表………………………………………………….……….……...…viii 第一章 前言…………………..…………………………………………….………1 一、澱粉(starch)的組成結構及其特性…………………………….………....……1 二、澱粉分為暫存性與儲存性澱兩種類型……………………….………....……2 三、暫存性澱粉為植物夜晚主要的能量來源…………………….………....……2 四、澱粉代謝概說…………………………………………………………….……3 五、糖類與植物荷爾蒙共同影響種子胚乳中澱粉水解…………………….……6 六、暫存性澱粉的代謝調控所知不多………………………………….........……7 七、糖類與離層酸期同促進澱粉合成………………………………..….......……7 八、離層酸可能與糖類相互拮抗,促進暫存性澱粉的水解………..……...……8 九、研究目的……………………………………………………….………....……9 第二章 材料與方法 ………………………………………………………...……11 一、實驗材料……………………………………………………….…………..…11 二、植物的消毒及生長環境……………………………………….………..……11 三、碘液染色………………………………………………………..……….……11 四、澱粉定量分析………………………………………………….………..……12 五、澱粉標準曲線之製作………………………………………….………..……12 六、阿拉伯芥總量RNA(total RNA)的萃取……………………………………...12 七、反轉錄聚合酶連鎖反應(Reverse transcription-PCR)……………………..... 13 第三章 結果……………………………………………………………..…...……15 一、高濃度糖類抑制阿拉伯芥根部延長並造成澱粉堆積 …………………..…15 二、離層酸能減輕高濃度糖類對根長的抑制作用及澱粉堆積現象 ………..…16 三、離層酸調控澱粉水解相關之基因表現 ………………………………..……18 四、離層酸無法減輕sex1突變株澱粉堆積之現象………………………………19 五、根部延長與澱粉堆積與否無關 …………………………………..…………20 第四章 討論………………………………………………………………..……...21 一、糖類缺乏對於植物生長之影響 ………………………………………..……21 二、1%葡萄糖與蔗糖促進植物生長 …………………………………….………22 三、葡萄糖與蔗糖在植物生長發育上的影響 …………………………..………23 四、根部延長的抑制作用主要受滲透壓調控 …………………………..………24 五、離層酸與高濃度糖類在根部延長與澱粉代謝為相互拮抗 …………..……25 六、離層酸誘導多種澱粉水解相關基因之表現 ………………………..………27 七、離層酸藉由SEX1促進澱粉水解…………………………………….………30 第五章 結論與未來展望…………………………………………………..……...31 第六章 參考文獻…………………………………………………………..……...33

    Abebe T., Guenzi A.C. Martin B. and Cushman J.C. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant physiol. 131, 1784–1755.

    Akihiro T., Mizuno K. and Fujimura T. (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol. 46, 937–946.

    Arenas-Huertero F., Arroyo A., Zhou L., Sheen J. and Leon P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085–2096.

    Baier M., Hemmann G., Holman R., Corke F., Card R., Smith C., Rook F., Bevan M.W. (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol. 134, 81-91.

    Baunsgaard L., Lütken H., Mikkelsen R., Glaring M.A., Pham T.T. and Blennow A. (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J. 41, 595–605.

    Beck E. and Ziegler P. (1989) Biosynthesis and degradation of starch in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 95–117.

    Blennow A., Nielsen T.H., Baunsgaard L., Mikkelsen R. and Engelsen S.B. (2002) Starch phosphorylation: a new front line in starch research. Trends Plant Sci. 7, 445–50.

    Bonetta D. and McCourt P. (1998) Genetic analysis of ABA signal transduction pathways. Trends Plant Sci. 3, 231–235.

    Bustos S.A., Schaefer M.R. and Golden S.S. (2004) Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity. J. Bacteriol. 172, 1998–2004.

    Caspar T., Lin T.P., Kakefuda G, Benbow L., Preiss J. and Somerville C. (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95, 1181–1188.

    Chen M., Chory J. and Fankhauser C. (2004) Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117.

    Chia T., Thorneycroft D., Chapple A., Messerli G., Chen J.C., Zeeman S.C., Smith S.M. and Smith A.M. (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J. 37, 853–863.

    Critchley J.H., Zeeman S.C., Takaha T., Smith A.M. and Smith S.M. (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J. 26, 89–100.

    Dancer J., Neuhaus H.E. and Stitt M. (1990) Subcellular compartmentation of uridine nucleotides and nucleoside-5' -diphosphate kinase in leaves. Plant Physiol. 92, 637–641.

    Datta R., Selvi M.T., Seetharama N. and Sharma R. (1999) Stress-mediated enhancement of beta-amylase activity in pearl millet and maize leaves is dependent on light. J. Plant Physiol. 154, 657–664.

    Deak K.I. and Malamy J. (2005) Osmotic regulation of root system architecture. Plant J. 43, 17-28.

    Delatte T., Trevisan M., Parker M.L. and Zeeman S.C. (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J. 45, 815–830.

    Devlin P.F. (2002) Signs of the time: environmental input to the circadian clock. J. Exp. Bot. 374, 1535–50.

    Dijkwel P.P., Huijser C., Weisbeek P.J., Chua N.-H. and Smeekens S.C.M. (1997) Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9, 583–595.

    Dreier W., Schnarrenberger C. and Borner T. (1995) Light- and stress-dependent enhancement of amylolytic activities in white and green barley leaves: β-amylases are stress-induced proteins. J. Plant Physiol. 145, 342–348.

    Fankhauser C. and Staiger D. (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1–16.

    Eastmond P.J. and Graham I.A. (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 6, 72–78.

    Eimert K., Wang S.M., Lue W.I. and Chen J.C. (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell. 7, 1703–1712.

    Fettke J., Eckermann N., Poeste S., Pauly M. and Steup M. (2004) The glycan substrate of the cytosolic (Pho 2) phosphorylase isozyme from Pisum sativum L.: identification, linkage analysis, and subcellular localisation. Plant J. 39, 933–46.

    Fitter A.H. (1991) Characteristics and functions of root systems. In Plant Roots: The Hidden Half (Waisel, Y., Eshel, A. and Kafkafi, U., eds). New York: Marcel Dekker, 3–25

    Fordham-Skelton A.P., Chilley P., Lumbreras V., Reignoux S., Fenton T.R., Dahm C.C., Pages M. and Gatehouse J.A. (2002) A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J. 29, 705-15.

    Fowler S. and Thomashow M.F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 14, 1675–1690.

    Fritzius T., Aeschbacher R., Wiemken A. and Wingler A. (2001) Induction of ApL3 expression by trehalose complements the starch-deficient Arabidopsis mutant adg2-1 lacking ApL1, the large subunit of ADP-glucose pyrophosphorylase. Plant Physiol. 126, 883–889.

    Fujita N. and Taira (1998) A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat(Triticum monococcum L.). Planta 207, 125–132.

    Gazzarrini S. and McCourt P. (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4, 387–391.

    Ghosh H.P. and Preiss J. (1966) Adenosine diphosphate glucose pyrophosphorylase: a regulatory enzyme in the biosynthesis of starch in spinach chloroplasts. J. Biol. Chem. 241, 4491–4504.

    Gibson S.I. (2000) Plant sugar-response pathways: Part of a complex regulatory web. Plant Physiol. 124, 1532–1539.

    Gibson S.I. (2005) Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8, 93–102.

    Harn C.H., Bae J.M., Lee S.S., Min S.R. and Liu J.R. (2000) Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels. Plant Cell Physiol. 41, 1235–1242.

    Hasegawa M., Hashimoto N., Zhang J., Nakajima M., Takeda K., Yamaguchi I. and Murofushi N. (1995) Immunohistochemistry of gibberellins in rice anthers. Biosci. Biotechnol. Biochem. 59, 1925–1929.

    Hendriks J.H., Kolbe A., Gibon Y., Stitt M. and Geigenberger P. (2003) ADP-Glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 133, 838–849.

    Huijser C., Kortstee A., Pego J., Weisbeek P., Wisman E. and Smeekens S. (2000) The Arabidopsis sucrose uncoupled-6 gene is identical to abscisic acid insensitive-4: involvement of abscisic acid in sugar responses. Plant J. 23, 577–585.

    Jang J.C., and Sheen J. (1997) Sugar sensing in higher plants. Trends Plant Sci. 2, 208–214.

    Jenkins P.J., Cameron R.E. and Donald A.M. (1993) A universal feature in the starch granules from different botanical sources. Starke 45, 417–420.

    Jung S.H., Lee J.Y. and Lee D.H. (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol. Biol. 52, 553–567.

    Kaplan F. and Guy C.L. (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135, 1674–1684.

    Kaplan F. and Guy C.L. (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J. 44, 730–743.

    Kerk D., Conley T.R., Rodriguez F.A., Tran H.T., Nimick M., Muench D.G., Moorhead G.B. (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant J. 46, 400-13.

    Kim Y.C., Nakajima M., Nakayama A. and Yamaguchi I. (2005) Contribution of gibberellins to the formation of Arabidopsis seed coat through starch degradation. Plant and Cell Physiol. 46, 1317–1325.

    Kolbe A., Tiessen A., Schluepmann H., Paul M., Ulrich S. and Geigenberger P. (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc. Natl. Acad. Sci. U. S. A. 102, 11118–11123.

    Kramer P.J. and Boyer J.S. (1995) Water Relations of Plants and Soils. Academic Press, Inc., San Diego, USA.

    Kreps J.A., Wu Y., Chang H.S., Zhu T., Wang X. and Harper J.F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141.

    Kurata T., and Yamamoto K.T. (1998) petit1, a conditional growth mutant of Arabidopsis defective in sucrose-dependent elongation growth. Plant Physiol. 118, 793–801.

    Laby R.J., Kincaid M.S., Kim D. and Gibson S.I. (2000) The Arabidopsis sugar- insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23, 587–596.

    Lao N.T., Schoneveld O., Mould R.M., Hibberd J.M., Gray J.C. and Kavanagh T.A. (1999) An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant J. 20, 519–527.

    Leung J. and Giraudat J. (1998) Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199–222.

    Li X., Xing J., Gianfagna T.J. and Janes H.W. (2002) Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits. Plant Sci. 162, 239–244.

    Lloyd J.R., Kossmann J. and Ritte G. (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci. 10, 130–137.

    Lopez-Bucio, J., Cruz-Ramirez, A and Herrera-Estrella, L. (2003) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287.

    Lorberth R., Ritte G., Willmitzer L. and Kossmann J. (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat. Biotechnol. 16, 473–477.

    Lu Y., Gehan .J.P. and Sharkey T.D. (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol. 138, 2280–2291.

    Lu Y. and Sharkey T.D. (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218, 466–473.

    Malamy J. (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28, 67–77.

    Martin C. and Smith A.M. (1995) Starch biosynthesis. Plant Cell 7, 971–985.

    Mikkelsen R., Baunsgaard L. and Blennow A. (2004) Functional characterization of α-glucan, water dikinase, the starch phosphorylating enzyme. Biochem. J. 377, 525–532.

    Millar A.J. (2004) Input signals to the plant circadian clock. J. Exp. Bot. 395, 277–83.

    Miyazawa Y., Sakai A., Miyagishima S., Takano H., Kawano S. and Kuroiwa T. (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol. 121, 461–469.

    Mouille G., Maddelein M.L., Libessart N., Talaga P., Decq A., Delrue B. and Ball S. (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8, 1353-1366.

    Müller-Röber B.T., Kossmann J., Hannah L.C., Willmitzer L. and Sonnewald U. (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol. Gen. Genet. 224, 136–146.

    Myers A.M., Morell M.K., James M.G. and Ball S.G. (2000) Recent progress toward understanding the biosynthesis of the amylopectin crystal. Plant Physiol. 122, 989–998.

    Nagao M., Minami A., Arakawa K., Fujikawa S., Takezawa D. (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J. Plant Physiol. 162, 169-180.

    Nakajima M., Nakayama A., Xu Z.J. and Yamaguchi I. (2004) Gibberellin induces α-amylase gene in seed coat of Ipomoea nil immature seeds. Biosci. Biotechnol. Biochem. 68, 631–637.

    Nakamura T., Vrinten P., Hayakawa K. and Ikeda J. (1998) Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118, 451–459.

    Nakamura Y. and Kawaguchi K. (1992) Multiple forms of ADP-glucose pyrophosphorylase of rice endosperm. Physiologia Plantarum 84, 336–342.

    Neuhaus H.E. and Schulte N. (1996) Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem. J. 318, 945–953.

    Neuhaus H.E., and Stitt M. (1990) Control analysis of photosynthate partitioning: Impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana(L.) Heynh. Planta 182, 445–454.

    Neuhausa H.E., Häuslerb R.E. and Sonnewald U. (2005) No need to shift the paradigm on the metabolic pathway to transitory starch in leaves. Trends Plant Sci. 10, 154–156.

    Nielsen T.H., Krapp A., Röper-Schwarz U. and Stitt M. (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ. 21, 443–455.

    Nielsen T.M., Deiting U. and Stitt M. (1997) A beta-amylase in potato tubers is induced by storage at low temperature. Plant Physiol. 113, 503–510.

    Niittylèa T., Comparot-Moss S., Lue W.L., Messerli G., Trevisan M., Seymour M.D., Gatehouse J.A., Villadsen D., Smith S.M., Chen J.C., Zeeman S.C. and Smith A.M. (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals.
    J. Biol. Chem. 281, 11815-11818.

    Niittylèa T., Messerli G., Trevisan M., Chen J.C., Smith A.M. and Zeeman S.C. (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303, 87–89.

    Ogawa M., Hanada A., Yamauch Y., Kuwahara A., Kamiya Y. and Yamaguchi S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15, 1591–1604.

    Perata P., Matsukura C., Vernieri P., and Yamaguchi J. (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9, 2197–2208.

    Periappuram C., Steinhauer L., Barton D.L., Taylor D.C., Chatson B. and Zou J. (2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol. 122, 1193–1200.

    Ritchie S., Swanson S.J. and Gilroy S. (2000) Physiology of the aleurone layer and starchy endospermduring grain development and early seedling growth: new insights from cell and molecular biology. Seed Sci. Res. 10, 193–212.

    Ritte G., Lloyd J. R., Eckermann N., Rottmann A., Kossmann J., and Steup M. (2002) The starch-related R1 protein is an α-glucan, water dikinase. Proc. Natl. Acad. Sci. U. S. A. 99, 7166–7171.

    Ritte G., Scharf A., Eckermann N., Haebel S. and Steup M. (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiol. 135, 2068–2077.

    Rolland F., Moore B., and Sheen J. (2002) Sugar sensing and signaling in plants. Plant Cell Suppl. S185-S205.

    Rook F. and Bevan M.W. (2003) Genetic approaches to understanding sugar-response pathways. J. Exp. Bot. 54, 495–501.

    Rook F., Corke F., Baier M., Holman R., May A.G. and Bevan M.W. (2006) Impaired sucrose induction 1 encodes a conserved plant-specific protein that couples carbohydrate availability to gene expression and plant growth. Plant J. 46, 1045–58.

    Rook F., Corke F., Card R., Munz G., Smith C. and Bevan M.W. (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 26, 421–433.

    Scheible W.R., Fontes A.G., Lauerer M., Muller-Rober B., Caboche M. and Stitt M. (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783–798.

    Scheidig A. , Fröhlich A., Schulze S., Lloyd J.R., and Kossmann J. (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J. 30, 581–591.

    Schulze W., Stitt M., Schulze E.D., Neuhaus H. E., and Fichtner K. (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol. 95, 890–895.

    Seki M., Narusaka M., Abe, H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y. and Shinozaki K. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

    Seki M., Narusaka M. and Ishida J. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292.

    Servaites J.C. and Geiger D.R. (2002) Kinetic characteristics of chloroplast glucose transport. J. Exp. Bot. 53, 1581–1591.

    Sharkey T.D., Laporte M., Lu, Y., Weise S. and Weber A.P. (2004) Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biol.(Stuttg.) 6, 280–288.

    Shen B., Hohmann S., Jensen R.G. and Bohnert H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121, 45–52.

    Singh D.P., Jermakow A.M. and Swain S.M. (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14, 133–3147.

    Smeekens S. (2000) Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49–81.

    Smith A.M., Zeeman S.C. and Smith S.M. (2005) Starch degradation. Annu. Rev. Plant Biol. 56, 73–98.

    Smith S.M., Fulton D.C., Chia T., Thorneycroft D., Chapple A., Dunstan H., Hylton C., Zeeman S.C. and Smith A.M. (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol. 136, 2687–2699.

    Sokolov L.N., Déjardin A. and Kleczkowski L.A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana(thale cress). Biochem. J. 336, 681–687.

    Sowokinos J.R. and Preiss J. (1982) Pyrophosphorylases in Solanum tuberosum III. purification, physical and catalytic properties of ADP-glucose pyrophosphorylase in potatoes. Plant Physiol. 69, 1459–1466.

    Sung D.Y. (2001) Characterization of Arabidopsis heat shock protein 70(Hsp70) gene family and microarray analysis of gene expression in response to temperature extremes. PhD Thesis. University of Florida, FL, USA.

    Tetlow I.J., Morell M.K. and Emes M.J. (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55, 2131–2145.

    Tiessen A., Hendriks J.H., Stitt M., Branscheid A., Gibon Y., Farre E.M. and Geigenberger P. (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14, 2191–2213.

    Thompson D.B. (2000) On the non-random nature of amylopectin branching. Carbohydrate Polymers 43, 223–239.

    Trethewey R.N. and ap Rees T. (1994) A mutant of Arabidopsis thaliana lacking the ability to transport glucose across the chloroplast envelope. Biochem J. 301, 449–454.

    Vrinten P. and Nakamura T. (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 122, 255–263.

    Wang W. and Roach P.J. (2004) Glycogen and related polysaccharides inhibit the larforin dual-specificity protein phosphatase. Biochem. Biophys. Res. Commun. 325, 726–730.

    Wang J., Stuckey J.A., Wishart M.J. and Dixon J.E. (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J. Biol. Chem. 277, 2377–2380.

    Wang S.M., Chu B., Lue W.L., Yu T.S., Eimert K. and Chen J.C. (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J. 11, 1121–1126.

    Wang S.M., Lue W.L., Yu T.S., Long J.H., Wang C.N., Eimert K. and Chen J.C. (1998) Characterization of ADG1, and Arabidopsis locus encoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of the small subunit is required for large subunit stability. Plant J. 13, 63–70.

    Wang S.J., Yeh K.W. and Tsai C.Y. (2001) Regulation of starch granulebound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Science 161, 635–644.

    Wanner L. and Junttila O. (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 120, 391–400.

    Ward J.M. (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics. 17, 560–563.

    Weise S.E., Kim K.S., Stewart R.P. and Sharkey T.D. (2005) β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol. 137, 756–761.

    Weise S.E., Schrader S.M., Kleinbeck K.R. and Sharkey T.D. (2006) Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch. Plant Physiol. 141, 879–886.

    Weise S.E., Weber A.P. and Sharkey T.D. (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218, 474–482.

    Yu S.M., Lee Y.C., Fang S.C., Chan M.T., Hwa S.F., and Liu L.F. (1996) Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains. Plant Mol. Biol. 30, 1277–1289.

    Yu T.S., Kofler H., Häusler R.E., Hille D., Flügge U.I., Zeeman S.C., Smith A.M., Kossmann J., Lloyd J. and Ritte G. (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907–1918.

    Yano R., Nakamura M., Yoneyama T. and Nishida I. (2005) Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol. 138, 837–846.

    Zeeman S.C. and ap Rees T. (1999) Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ. 22, 1445–1453.

    Zeeman S.C., Northrop F., Smith A.M. and Rees T. (1998) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J. 15, 357–365.

    Zeeman S.C., Thorneycroft D., Schupp N., Chapple A., Weck M., Dunstan H., Haldimann P., Bechtold N., Smith A.M. and Smith S.M. (2004) Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol. 135, 849–858.

    下載圖示 校內:2008-08-31公開
    校外:2009-08-31公開
    QR CODE