| 研究生: | 陳宣翰 Chen, Hsuan-Han | 
|---|---|
| 論文名稱: | 自由活塞式史特靈引擎之製作和動力性能量測 Manufacturing a Free-Piston Stirling Engine and Experiments on its Dynamic Behavior | 
| 指導教授: | 鄭金祥 Cheng, Chin-Hsiang | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering | 
| 論文出版年: | 2024 | 
| 畢業學年度: | 112 | 
| 語文別: | 中文 | 
| 論文頁數: | 124 | 
| 中文關鍵詞: | 自由活塞式史特靈引擎 、史特靈引擎 、相位角 、線性發電機 、熱力模型 | 
| 外文關鍵詞: | Free-piston Striling engine, Striling engine, Phase angle, Linear alternator, Thermodynamoic model | 
| 相關次數: | 點閱:47 下載:7 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本研究主題是自由活塞式史特靈引擎,屬於史特靈引擎的一種,通過自由活塞式史特靈引擎中兩個動件,活塞和移氣器的配合,讓工作流體在熱庫吸熱膨脹、冷庫放熱收縮。以對外作功,但是本研究和傳統引擎不同的是動件沒有和飛輪、連桿等機構進行連接,而是和各自獨立的連接彈簧進行振動,並分別由工作流體推動。
為了分析不同的參數對自由活塞式史特靈引擎振動的影響,本研究建立熱力、動力、電力、磁力數值模型求解引擎振動模態,同時製作自由活塞式史特靈引擎原型機,並通過雷射位移計量測動件的振動狀態,和模擬求解的數據進行比較。本研究將通過求解不同操作參數(加熱溫度、活塞質量、活塞彈簧、移氣器彈簧等等),以分析自由活塞式史特靈引擎的變化。
為了讓本研究的原型機在運轉時可以輸出功率,本研究在活塞上連接線性發電機,讓原型機在運轉時輸出電功,本研究將通過數值模型求解原型機之發電性能,並以實驗驗證之。其中  最佳之電功率為29.8 W,最佳指示功率為 42.2 W。
The subject of this study is the Free-Piston Stirling Engine (FPSE), a type of Stirling engine. It operates through the coordination of two moving components in the FPSE, the piston and the displacer, allowing the working fluid to absorb heat and expand in the hot reservoir and release heat and contract in the cold reservoir, thereby performing work. However, unlike traditional engines, the moving parts in this study are not connected to mechanisms such as flywheels or connecting rods. Instead, they vibrate with independent connection springs and are driven separately by the working fluid.
To analyze the effects of different parameters on the vibration of the FPSE, this study establishes numerical models for thermal, dynamic, electrical, and magnetic forces to solve for the engine's vibration modes. Additionally, a prototype of the FPSE is constructed, and the vibration state of the moving components is measured using a laser displacement meter. These measurements are then compared with the simulation results. This study aims to analyze the variations in the FPSE by solving for different operating parameters (such as piston mass, piston spring, displacer spring, etc.).
1. 陳麗娟, 歐盟 CBAM 法規:台灣廠商因應之道與申報準備. 高雄: 麗文文化, 2023.
2. S. B. Rao and N. Ramkumar, "A review on Stirling cycle engine," Journal of Emerging Technologies and Innovative Research, Vol. 6, 562112, 2019.
3. C. M. Hargreaves, The Philips Stirling engine, New York: Elsevier, 1991.
4. S. Acharya and S. Bhattacharjee, "Stirling engine based solarthermal power plant with a thermo-chemical storage system," Energy Conversion and Management, Vol. 86, pp. 901-915, 2014.
5. D. Zhang, G. H. Su, S. Qiu, W. Tian, and Z. D. C. Wang, "Design and analysis of a free-piston Stirling engine for space nuclear power reactor," Nuclear Engineering and Technology, Vol. 53, pp. 637-646, 2021.
6. D. Erol, H. Yaman, and B. Doğan, "A review development of rhombic drive mechanism used in the Stirling engines," Renewable and Sustainable Energy Reviews, Vol. 78, pp. 1044-1067, 2017.
7. D. Ipci, H. Karabulut, M. Altin, M. Okur, and S. Halis, "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Vol. 148, pp. 855-865, 2018.
8. H. S. Yang, M. A. Ali, S. Y. Kuan, and Y. T. Lin, "Stability evaluation of a free-piston Stirling engine using linear dimensionless models and stability curves," Applied Thermal Engineering, Vol. 224, 120073, 2023.
9. K. Zhu, Y. Xia, and Z. Wei, "Effect of damping coefficients on a freepiston Stirling engine under a constant power condition based on a thermodynamic-dynamic coupled model," Applied Thermal Engineering, Vol. 232, 121027, 2023.
10. B. J. G. D. L. Bat, "Theoretical simulation, manufacture and experimental evaluation of a free-piston Stirling engine electric generator," Ph.D. dissertation, Faculty of Engineering, Stellenbosch University, Stellenbosch, 2019.
11. H. S. Yang, "Numerical model for predicting the performance and 50transient behavior of a gamma-type free piston Stirling engine," Applied Thermal Engineering, Vol. 185, 116375, 2021.
12. G. Hong, J. Mou, J. Li, and W. Li, "Gas action effect of free piston Stirling engine," Energy Conversion and Management, Vol. 110, pp. 278-286, 2016.
13. S. Kim, J. Huth, and J. Wood, "Performance Characterization of Sunpower Free-Piston Stirling Engines," presented at the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, 2005.
14. S. Zare and A. T. Saleh, "Free piston Stirling engines: A review," International Journal of Energy Research, Vol. 44, pp. 5040-5070, 2018.
15. A. Barakat, S. Lasala, P. Arpentinier, P. Tobaly, and J. Jaubert, "Understanding the thermodynamic effects of chemically reactive working fluids in the Stirling engine," Energy Conversion and Management, Vol. 22,100573, 2024.
16. 林昱廷, "自由活塞式史特靈引擎之動態模擬與製作," 碩士論文, 航空太空工程學系, 國立成功大學, 台南市, 民國 100 年.
17. W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer. New York: McGraw-Hill, 1997.
18 T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer. New Jersey: Wiley, 2018.
19. 陳品穎, "再生器孔隙率梯度對自由活塞式史特靈引擎效能之影響分析," 碩士論文, 航空太空工程學系, 國立成功大學, 台南市, 民國 110 年.
20. R. A. Ackermann, Regenerative Cryogenic Refrigerators. New York: Kluwer Academic Publishers, 1997.
21. 黃上庭, "結合自由活塞式史特靈引擎與線性發電機之理論模式與設計," 碩士論文, 航空太空工程學系, 國立成功大學, 台南市, 民國 103 年.
22. S. Širca, Probability for Physicists. Berlin: Springer, 2016.
23. S. I. Kabanikhin, A. Hasanov, and A. V. Penenko, "A gradient descent method for solving an inverse coefficient heat conduction problem," Numerical Analysis and Applications, Vol. 1, pp. 34-45, 2011.
24. 蘇紹禹、高紅霞, 永磁發電機機理、設計及應用. 北京: 機械工業出版社, 2015.
25. A. Drory, "Motivating the Biot-Savart Law," The Physics Teacher, Vol. 61, p. 368, 2023.
26. 林彥廷, "雙作動自由活塞式史特靈冷-熱-電聯合供應系統之理論模型與性能分析," 碩士論文, 國立中正大學光機電整合工程研究所, 嘉義縣, 民國 111 年.
27.A. Darwich, A. G. Merino, and S. G. Pérez, "A demonstration of Faraday’s law of induction by means of a magnetized fidget spinner," Physics Education, Vol. 58, 35019, 2023.
28. H. S. Yang, H. Q. Zhu, and X. Z. Xiao, "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Vol. 275, 127535, 2023.
29. X. Zou and X. He, "Mutual Inductance of Coils for Wireless Power Transfer," presented at the 2020 Cross Strait Radio Science & Wireless Technology Conference, Fuzhou, 2020.
30. G. Walker and J. R. Senft, Free Piston Stirling Engine. Heidelberg: Springer-Verlag, 1985.
31. T. Topgü, "Thermodynamic Analysis of a Gamma-type Stirling Engine Powered by Solar Energy," Journal of Mechanical Engineering, Vol. 68, pp. 757-770, 2023.
32.吳佳璋, 振動學. 新北市: 新文京開發出版股份有限公司, 2016.
33.G. Féniès, F. Formosa, J. Ramousse, and A. Badel, "Double acting Stirling engine: Modeling, experiments and optimization," Applied Energy, Vol. 159, pp. 350-361, 2015.
34.S. W. Van Sciver, Classical Helium Heat Transfer. Berlin: Springer, 2011.
35. F. J. G. Díaz, Basic Electric, Electromagnetic Magnitudes and Units. New York: Elsevier, 2023.