| 研究生: |
邱子軒 Qiu, Zi-Xuan |
|---|---|
| 論文名稱: |
應用作業場所即時監測設備評估勞工暴露實態之技術開發與驗證 Development and verification of applying the real-time monitoring technique in the workplace to assess workers exposure profiles |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氣體感測器 、佈點分析 、即時監測 、暴露實態 、微洩漏 |
| 外文關鍵詞: | Gas sensor, Gridding optimization, Real-time monitoring, Exposure profile, Micro-leakage |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統作業環境監測因需經常投注大量資源,及採樣過程耗時費力,實務上並無法滿足長期監測策略之需求。特別是因樣本數不足,致監測結果之可靠性降低等問題,亦大大降低了作業環境監測的實施效益。近年來,即時監測技術逐漸受到重視,物聯網、無線感測網路(WSN)為場域即時監測之新興工具。然而,過去關於感測器佈點數量與位置有效性之探討有限,即時監測技術應用於個人暴露監測之可行性仍有待開發。本研究利用低成本感測器於實場佈點,先藉由佈點分析方法進行感測點位之設置優化,然後再應用即時監測技術,針對暴露評估與微洩漏警示等兩大面向,進行實務應用探討。本研究選擇於示範場域環境(L×W=40 m×10 m) 部署43台氣體感測器,所得測定資料,透過佈點分析法進行感測器點位及數量之部署優化,並搭配Clough-Tocher內插方法獲得場域濃度之時空分佈。本研究結合勞工定位與場域濃度分佈之時序資料分析勞工暴露實態,進一步估算勞工之職業暴露量,採樣期間同步使用直讀式儀器進行比對量測,考量定位誤差所造成暴露推估之不確定性,根據現有室內定位技術之誤差指標:0.01m、0.1m、0.3m、0.5m、1m,對應佈點分析精確度指標:5%、10%、15%、20%、25%,計算暴露推估濃度之均方根誤差(Root Mean Square Error, RMSE)以執行評估。另一方面以定點感測器之長期監測資料分析微洩漏警示閾值,藉此評估在佈點分析精確度指標:5%、10%、15%、20%、25% 下,微洩漏事件預防之警示閾值訂定範圍,以達及早預警、捕獲微洩漏之目的。本研究分別在實驗室與現場以PID同步感測器進行平行比對測試,於暴露艙控制條件下,相關性分析之R2介於0.9776~0.9998 (其中R2在0.99以上者共有35台(佔81%),R2在0.98以上者有42台(佔98%)),顯示感測器與PID之測值均呈現良好之相關性;現場測試則表明感測器存在系統誤差,於數據前處理時校正之。佈點分析結果顯示,在設定量測濃度精準度小於10%時,均無可移除點位(即需設置43點位);在精準度為15%、20%與25%時,現場所需設置之點位數量(及可移除點位)分別為42點(1點)、41點(2點)及35點(8點)。即時監測技術應用於暴露推估之實場驗證結果顯示,暴露推估之誤差隨定位精確度與佈點精確度下降而呈現誤差增加之趨勢,其中誤差最小值為99.8 ppb (定位精度:0.01 m,佈點精度:15%),誤差最大值為171.6 ppb (定位精度:1 m,佈點精度:25%)。微洩漏警示分析結果顯示,各感測點之High Alarm與High-High Alarm分別介於0.728~4.504 ppm與3.138~12.126 ppm,而在佈點精度指標為15%、20%與25%之佈點情境下,現場微洩漏警示限值之界定範圍不變,表示佈點精度指標為25%以下時,現場感測點位之設置情境,並不影響微洩漏警示閾值之訂定。本研究開發之即時監測技術能夠透過連續監測提供更貼近真實之暴露資訊,所使用之佈點分析技術能夠在資源有限的情況下,提升佈點之效益。本研究亦發現藉由即時監測技術,除能夠實現勞工長期暴露資料庫之建置外,亦能同時應用於微洩漏即之告警,有助於強化職業衛生管理,及職業安全之化學品洩漏及異常事件之防範。
There is limited available information about the effectiveness of sensor number deployed, and the feasibility of applying WSN for conducting personal exposure assessment. The purpose of this study was set out first to develop a sensor gridding optimization strategy, then apply the technique for conducting exposure assessments and setting for micro-leakage alarms. 43 low-cost TVOC sensors were deployed in the TFT-LCD field (L×W=40 m×10 m), then using sensor gridding optimization strategy to determine the best sensor deployment. A personal real-time exposure model is used to integrate the time series data for predicting workers’ exposures. The validation is based on each scenario which was according to the indicators of indoor positioning error and sensor gridding optimization error. Finally, the field measured concentration database was used for setting an alarm system for detecting micro-leakage events in the studied workplace. The results show that under the precision set at 15%, 20% and 25%, the number of sensors needed to be placed in field (removable point number) was 42 (1), 41(2), and 35 (8), respectively. Personal exposure results indicate that the increase of the error in the estimated exposures. The setting limits for micro-leakage detecting of each sensor which was recommended as the ranges between 0.728~4.504 ppm (high alarm) and 3.138~12.126 ppm (high-high alarm). In conclusions, the real-time monitoring technique can enhance the current environmental monitoring strategy, and provide more realistic exposure information through long-term and continuous monitoring. The application of the real-time detection of micro-leakage is helpful for preventing leakage and abnormal events.
Abdullah A, Kamarudin K, Mamduh S, Adom A. Development of mox gas sensors module for indoor air contaminant measurement. In: Proceedings of the IOP Conference Series: Materials Science and Engineering, 2019, Vol. 705IOP Publishing, 012029.
Agbroko SO, Covington J. 2018. A novel, low-cost, portable pid sensor for the detection of volatile organic compounds. Sensors and Actuators B: Chemical 275:10-15.
Akima H. 1970. A new method of interpolation and smooth curve fitting based on local procedures. Journal of the ACM (JACM) 17:589-602.
Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. 2002. Wireless sensor networks: A survey. Computer Networks 38:393-422.
Allwyn K, Subramanian LG. A new vectorial local procedure of slope determination applicable to cubic hermite interpolation. In: Proceedings of the AIP Conference Proceedings, 2020, Vol. 2282AIP Publishing LLC, 020020.
Amidror I. 2002. Scattered data interpolation methods for electronic imaging systems: A survey. Journal of electronic imaging 11:157-176.
Babu S, Chandini M, Lavanya P, Ganapathy K, Vaidehi V. 2013. Cloud-enabled remote health monitoring system. International Conference on Recent Trends in Information Technology (ICRTIT):702-707.
Bartier PM, Keller CP. 1996. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (idw). Computers & Geosciences 22:795-799.
Bartley DL, Shulman SA, Schlecht PC. 2003. Measurement uncertainty and niosh method accuracy range. National Institute for Occupational Safety and Health, NIOSH Manual of Analytical Methods:208-227.
Belegundu AD, Chandrupatla TR. 2019. Optimization concepts and applications in engineering:Cambridge University Press.
Bellomo N, Ridolfi L. 1995. Solution of nonlinear initial-boundary value problems by sinc collocation-interpolation methods. Computers & Mathematics with Applications 29:15-28.
Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, et al. 2020. Nanoparticle exposure and hazard in the ceramic industry: An overview of potential sources, toxicity and health effects. Environmental Research 184:109297.
Brena RF, García-Vázquez JP, Galván-Tejada CE, Muñoz-Rodriguez D, Vargas-Rosales C, Fangmeyer J. 2017. Evolution of indoor positioning technologies: A survey. Journal of Sensors 2017:2630413.
Brena RF, García-Vázquez JP, Galván-Tejada CE, Muñoz-Rodriguez D, Vargas-Rosales C, Fangmeyer J. 2017. Evolution of indoor positioning technologies: A survey. Journal of Sensors 2017.
Brown KK, Shaw PB, Mead KR, Kovein RJ, Voorhees RT, Brandes AR. 2016. Development of the chemical exposure monitor with indoor positioning (cemwip) for workplace voc surveys. J Occup Environ Hyg 13:401-412.
Brown KK, Norton AE, Neu DT, Shaw PB. 2019. Robotic direct reading device with spatial, temporal, and pid sensors for laboratory voc exposure assessment. J Occup Environ Hyg 16:717-726.
Byrley P, Geer Wallace MA, Boyes WK, Rogers K. 2020. Particle and volatile organic compound emissions from a 3d printer filament extruder. Science of The Total Environment 736:139604.
Cao L, Li Z, Gao M. 2020. Simulations of pollutant diffusion under different meteorological conditions.
Caruso C, Quarta F. 1998. Interpolation methods comparison. Computers & Mathematics with Applications 35:109-126.
Cauda E, Miller A, Drake P. 2016. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. J Occup Environ Hyg 13:D39-D45.
Chakkor S, Cheikh EA, Baghouri M, Hajraoui A. 2014. Comparative performance analysis of wireless communication protocols for intelligent sensors and their applications. arXiv preprint arXiv:14096884.
Chang T-Y, Huang K-H, Liu C-S, Shie R-H, Chao K-P, Hsu W-H, et al. 2010. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (tft-lcd) workers. Journal of Hazardous Materials 178:934-940.
Chen C, He J, Xu D, Tan X, Zhou X, Wang X. 2005. Study of nano-au-assembled amperometric co gas sensor. Sensors and Actuators B: Chemical 107:866-871.
Chen C, Driggs Campbell K, Negi I, Iglesias RA, Owens P, Tao N, et al. 2012. A new sensor for the assessment of personal exposure to volatile organic compounds. Atmos Environ 54:679-687.
Chen Q, Srebric J. 2002. A procedure for verification, validation, and reporting of indoor environment cfd analyses. HVAC&R Research 8:201-216.
Cheng M, Liu G, Cai KLW, Lee E. 1998. Approaches for improving airflow uniformity in unidirectional flow cleanrooms. Building and Environment 34:275-284.
Cheung WF, Lin TH, Lin YC. 2018. A real-time construction safety monitoring system for hazardous gas integrating wireless sensor network and building information modeling technologies. Sensors 18:24.
Chew LP. 1989. Constrained delaunay triangulations. Algorithmica 4:97-108.
Chiu S-W, Tang K-T. 2013. Towards a chemiresistive sensor-integrated electronic nose: A review. Sensors 13:14214-14247.
Clerc F, Vincent R. 2014. Assessment of occupational exposure to chemicals by air sampling for comparison with limit values: The influence of sampling strategy. Annals of occupational hygiene 58:437-449.
Coelho Rezende G, Le Calvé S, Brandner JJ, Newport D. 2019. Micro photoionization detectors. Sensors and Actuators B: Chemical 287:86-94.
Collier TC, Taylor C. 2004. Self-organization in sensor networks. J Parallel Distrib Comput 64:866-873.
Council NR. 2012. Exposure science in the 21st century: A vision and a strategy. Washington, DC:The National Academies Press.
Crump D. 2001. Strategies and protocols for indoor air monitoring of pollutants. Indoor and Built Environment 10:125-131.
Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA. 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: Mobile direct-reading sampling. The Annals of Occupational Hygiene 57:328-344.
Das AK, Zeadally S, Wazid M. 2017. Lightweight authentication protocols for wearable devices. Computers & Electrical Engineering 63:196-208.
Davis AY, Zhang Q, Wong JPS, Weber RJ, Black MS. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3d printers. Building and Environment 160:106209.
Del-Valle-Soto C, Valdivia LJ, Velázquez R, Rizo-Dominguez L, López-Pimentel J-C. 2019. Smart campus: An experimental performance comparison of collaborative and cooperative schemes for wireless sensor network. Energies 12:3135.
Dias D, Tchepel O. 2018. Spatial and temporal dynamics in air pollution exposure assessment. International Journal of Environmental Research and Public Health 15:558.
Dong L, Zuo H, Hu L, Yang B, Li L, Wu L. 2017. Simulation of heavy gas dispersion in a large indoor space using cfd model. Journal of Loss Prevention in the Process Industries 46:1-12.
Dopart PJ, Friesen MC. 2017. New opportunities in exposure assessment of occupational epidemiology: Use of measurements to aid exposure reconstruction in population-based studies. Curr Environ Health Rep 4:355-363.
Dragan GC, Breuer D, Blaskowitz M, Karg E, Schnelle-Kreis J, Arteaga-Salas JM, et al. 2015. An evaluation of the “ggp” personal samplers under semi-volatile aerosols: Sampling losses and their implication on occupational risk assessment. Environmental Science: Processes & Impacts 17:270-277.
Duarte K, Justino CIL, Freitas AC, Duarte AC, Rocha-Santos TAP. 2014. Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air. Trac-Trends Anal Chem 53:21-32.
Dumitru PD, Plopeanu M, Badea D. 2013. Comparative study regarding the methods of interpolation. Recent advances in geodesy and Geomatics engineering 1:45-52.
EPA U. 1994. Guidelines for statistical analysis of occupational exposure data.
Erdogan K. 2013. Spline interpolation techniques. Journal of Technical Science and Technologies:47-52.
Estrin D, Govindan R, Heidemann J, Kumar S. Next century challenges: Scalable coordination in sensor networks. In: Proceedings of the Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, 1999, 263-270.
Fathallah H, Eddine, Lecuire V, Rondeau E, Le Calvé S. 2015. Development of an iot-based system for real time occupational exposure monitoring. In: The Tenth International Conference on Systems and Networks Communications, ICSNC 2015. Barcelone, Spain.
Ferri G, Jakuba MV, Caselli E, Mattoli V, Mazzolai B, Yoerger DR, et al. Localizing multiple gas/odor sources in an indoor environment using bayesian occupancy grid mapping. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, IEEE, 566-571.
Fischer ML, Price PN, Thatcher TL, Schwalbe CA, Craig MJ, Wood EE, et al. 2001. Rapid measurements and mapping of tracer gas concentrations in a large indoor space. Atmos Environ 35:2837-2844.
Fritsch FN, Carlson RE. 1980. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis 17:238-246.
Fryer M, Collins CD, Ferrier H, Colvile RN, Nieuwenhuijsen MJ. 2006. Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications. Environmental Science & Policy 9:261-274.
Gardiner K. 1995. Needs of occupational exposure sampling strategies for compliance and epidemiology. Occupational and Environmental Medicine 52:705.
Ghosh A, Maity A, Banerjee R, Majumder S. 2017. Volatile organic compound sensing using copper oxide thin films: Addressing the cross sensitivity issue. Journal of Alloys and Compounds 692:108-118.
Grasic B, Mlakar P, Boznar MZ. 2011. Method for validation of lagrangian particle air pollution dispersion model based on experimental field data set from complex terrain. In: Advanced air pollution:IntechOpen.
Grešner P, Świercz R, Król MB, Twardowska E, Gromadzińska J, Wąsowicz W. 2016. Does the low-level occupational exposure to volatile organic compounds alter the seasonal variation of selected markers of oxidative stress? A case–control study in nail technicians. Journal of Occupational Medicine and Toxicology 11:1-11.
Guestrin C, Krause A, Singh AP. Near-optimal sensor placements in gaussian processes. In: Proceedings of the Proceedings of the 22nd international conference on Machine learning, 2005, 265-272.
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, et al. 2020. Acute phase response as a biological mechanism‐of‐action of (nano) particle‐induced cardiovascular disease. Small 16:1907476.
Hamida EB, Chelius G. 2008. Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications 15:31-37.
Hanna SR, Briggs GA, Hosker Jr RP. 1982. Handbook on atmospheric diffusion.National Oceanic and Atmospheric Administration, Oak Ridge, TN (USA ….
Hashimoto H, Yamada K, Hori H, Kumagai S, Murata M, Nagoya T, et al. 2018. Guidelines for personal exposure monitoring of chemicals: Part iv. J Occup Health:17-0311-RA.
Hayashi T, Ishizu Y, Kato S, Murakami S. 2002. Cfd analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the effects of contaminant inhalation by a human occupant. Building and Environment 37:219-230.
Heitbrink WA, Evans DE, Peters TM, Slavin TJ. 2007. Characterization and mapping of very fine particles in an engine machining and assembly facility. J Occup Environ Hyg 4:341-351.
Hewett P. 2001. Misinterpretation and misuse of exposure limits. Applied Occupational and Environmental Hygiene 16:251-256.
Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T. 2001. Cytotoxic effects of cigarette smoke extract on an alveolar type ii cell-derived cell line. American Journal of Physiology-Lung Cellular and Molecular Physiology 281:L509-L516.
Huang F-C, Shih T-S, Lee J-F, Chao H-P, Wang P-Y. 2010. Time location analysis for exposure assessment studies of indoor workers based on active rfid technology. Journal of Environmental Monitoring 12:514-523.
Huang FC, Shih TS, Lee JF, Chao HP, Wang PY. 2010. Time location analysis for exposure assessment studies of indoor workers based on active rfid technology. J Environ Monit 12:514-523.
Huang H, Dasgupta PK. 1997. Electrochemical sensing of gases based on liquid collection interfaces. Electroanalysis 9:585-591.
Huang JZ, Stone CJ. 2003. Extended linear modeling with splines. In: Nonlinear estimation and classification:Springer, 213-233.
Huang Y, Shen X, Li J, Li B, Duan R, Lin C-H, et al. 2015. A method to optimize sampling locations for measuring indoor air distributions. Atmos Environ 102:355-365.
Hussain MA, khan P, Kwak kyung S. Wsn research activities for military application. In: Proceedings of the 2009 11th International Conference on Advanced Communication Technology, 15-18 Feb. 2009 2009, Vol. 01, 271-274.
Jahn SD, Bullock WH, Ignacio JS. 2015. A strategy for assessing and managing occupational exposures:AIHA Fairfax, VA.
Jayjock MA, Chaisson CF, Arnold S, Dederick EJ. 2007. Modeling framework for human exposure assessment. Journal of Exposure Science & Environmental Epidemiology 17:S81-S89.
Jiang Y, Zhu X, Chen C, Ge Y, Wang W, Zhao Z, et al. 2021. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicology and Environmental Safety 211:111958.
Jo M-S, Shin J-H, Kim W-J, Jeong J-W. 2017. Energy-saving benefits of adiabatic humidification in the air conditioning systems of semiconductor cleanrooms. Energies 10:1774.
Kanaroglou PS, Jerrett M, Morrison J, Beckerman B, Arain MA, Gilbert NL, et al. 2005. Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmos Environ 39:2399-2409.
Kay Soon L, Win WNN, Meng Joo E. Wireless sensor networks for industrial environments. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), 28-30 Nov. 2005 2005, Vol. 2, 271-276.
Kayat J, Gajbhiye V, Tekade RK, Jain NK. 2011. Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomedicine: Nanotechnology, Biology and Medicine 7:40-49.
Kennedy ER, Fischbach TJ, Song R, Eller PM, Shulman SA. 1995. Guidelines for air sampling and analytical development and evaluation:NIOSH.
Keskin ME, Altınel İK, Aras N, Ersoy C. 2014. Wireless sensor network lifetime maximization by optimal sensor deployment, activity scheduling, data routing and sink mobility. Ad Hoc Networks 17:18-36.
Khedo KK, Perseedoss R, Mungur A. 2010. A wireless sensor network air pollution monitoring system. arXiv preprint arXiv:10051737.
Kim E-A, Lee H-E, Ryu H-W, Park S-H, Kang S-K. 2011. Cases series of malignant lymphohematopoietic disorder in korean semiconductor industry. Safety and Health at Work 2:122-134.
Kim JY, Magari SR, Herrick RF, Smith TJ, Christiani DC, Christiani DC. 2004. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. J Occup Environ Hyg 1:707-715.
Koehler KA, Volckens J. 2011. Prospects and pitfalls of occupational hazard mapping: ‘Between these lines there be dragons’. The Annals of Occupational Hygiene 55:829-840.
Koehler KA, Zhu J, Wang H, Peters TM. 2017. Sampling strategies for accurate hazard mapping of noise and other hazards using short-duration measurements. Annals of Work Exposures and Health 61:183-194.
Kozlov AG. 2002. Optimization of structure and power supply conditions of catalytic gas sensor. Sensors and Actuators B: Chemical 82:24-33.
Kromhout H, Symanski E, Rappaport SM. 1993a. A comprehensive evaluation of within- and between-worker components of occupational exposure to chemical agents. The Annals of Occupational Hygiene 37:253-270.
Kromhout H, Symanski E, Rappaport SM. 1993b. A comprehensive evaluation of within-and between-worker components of occupational exposure to chemical agents. The Annals of occupational hygiene 37:253-270.
Kromhout H. 2002. Design of measurement strategies for workplace exposures. Occupational and Environmental Medicine 59:349.
Kumar N. 2009. An optimal spatial sampling design for intra-urban population exposure assessment. Atmos Environ 43:1153-1155.
Lake K, Zhu J, Wang H, Volckens J, Koehler KA. 2015. Effects of data sparsity and spatiotemporal variability on hazard maps of workplace noise. J Occup Environ Hyg 12:256-265.
Lavric A, Popa V. 2018. Performance evaluation of lorawan communication scalability in large-scale wireless sensor networks. Wireless Communications and Mobile Computing 2018.
Lewis A, Edwards P. 2016. Validate personal air-pollution sensors. Nature 535:29-31.
Leyvand T, Meekhof C, Wei Y-C, Sun J, Guo B. 2011. Kinect identity: Technology and experience. Computer 44:94-96.
Li H, Mu X, Yang Y, Mason AJ. 2014. Low power multimode electrochemical gas sensor array system for wearable health and safety monitoring. IEEE Sensors Journal 14:3391-3399.
Li Z, Deng Z, Liu W, Xu L. A novel three-dimensional indoor localization algorithm based on multi-sensors. In: Proceedings of the China Satellite Navigation Conference (CSNC) 2013 Proceedings, 2013, Springer, 623-631.
Liu B, Liu X, Lu C, Godbole A, Michal G, Tieu AK. 2016. Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment. Journal of Loss Prevention in the Process Industries 40:419-432.
Liu X, Makino H, Maeda Y. Basic study on indoor location estimation using visible light communication platform. In: Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, IEEE, 2377-2380.
Logan P, Ramachandran G, Mulhausen J, Hewett P. 2009. Occupational exposure decisions: Can limited data interpretation training help improve accuracy? Annals of occupational hygiene 53:311-324.
Ma Y-W, Chen J-L, Huang Y-M, Lee M-Y. 2010. An efficient management system for wireless sensor networks. Sensors 10:11400-11413.
Makeenkov A, Lapitskiy I, Somov A, Baranov A. 2015. Flammable gases and vapors of flammable liquids: Monitoring with infrared sensor node. Sensors and Actuators B: Chemical 209:1102-1107.
Mautz R. 2012. Indoor positioning technologies.
McKinley S, Levine M. 1998. Cubic spline interpolation. College of the Redwoods 45:1049-1060.
Mkrtchyan A. Spatial interpolation of field data on plant abundance. In: Proceedings of the Natural Forests in the Temperate Zone of Europe–Values and Utilisation Proceedings of international conference, 2003, 13-17.
Mølhave L, Clausen G, Berglund B, De Ceaurriz J, Kettrup A, Lindvall T, et al. 1997. Total volatile organic compounds (tvoc) in indoor air quality investigations. Indoor Air 7:225-240.
Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, et al. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International 116:286-299.
Moretto A. 2015. Exposure assessment for chemical and physical agents. Handb Clin Neurol 131:47-59.
Moschandreas DJ, Watson J, D'Abreton P, Scire J, Zhu T, Klein W, et al. 2002. Chapter three: Methodology of exposure modeling. Chemosphere 49:923-946.
Mueller T, Dhanikonda S, Pusuluri N, Karathanasis A, Mathias K, Mijatovic B, et al. 2005. Optimizing inverse distance weighted interpolation with cross-validation. Soil science 170:504-515.
Negi I, Tsow F, Tanwar K, Zhang L, Iglesias RA, Chen C, et al. 2011. Novel monitor paradigm for real-time exposure assessment. Journal of Exposure Science & Environmental Epidemiology 21:419-426.
O'Connor A, Peckham T, Seixas N. 2020. Considering work arrangement as an "exposure" in occupational health research and practice. Front Public Health 8:363-363.
Park H, Jang J-K, Shin J-A. 2011. Quantitative exposure assessment of various chemical substances in a wafer fabrication industry facility. Safety and health at work 2:39-51.
Pearce T, Coffey C. 2011a. Analytical performance issues: Integrating direct-reading exposure assessment methods into industrial hygiene practice. Journal of Occupational and Environmental Hygiene 8:D31-D36.
Pearce T, Coffey C. 2011b. Analytical performance issues. J Occup Environ Hyg 8:D31-D36.
Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD. 2005. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. The Annals of Occupational Hygiene 50:249-257.
Petit P, Bicout DJ, Persoons R, Bonneterre V, Barbeau D, Maître A. 2017. Constructing a database of similar exposure groups: The application of the exporisq-hap database from 1995 to 2015. Annals of Work Exposures and Health 61:440-456.
Phillips CV. 2003. Quantifying and reporting uncertainty from systematic errors. Epidemiology:459-466.
Piedrahita R, Xiang Y, Masson N, Ortega J, Collier A, Jiang Y, et al. 2014. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmospheric Measurement Techniques 7:3325.
Pilka T, Petrovicova I, Kolena B, Zatko T, Trnovec T. 2015. Relationship between variation of seasonal temperature and extent of occupational exposure to phthalates. Environmental Science and Pollution Research 22:434-440.
Pownuk A, Kreinovich V. 2017. Why linear interpolation? Математические структуры и моделирование.
Qiao P, Li P, Cheng Y, Wei W, Yang S, Lei M, et al. 2019. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Environmental geochemistry and health 41:2709-2730.
Quinn C, Anderson GB, Magzamen S, Henry CS, Volckens J. 2020. Dynamic classification of personal microenvironments using a suite of wearable, low-cost sensors. J Expo Sci Environ Epidemiol:9.
Ramachandran G. 2008. Toward better exposure assessment strategies—the new niosh initiative. The Annals of Occupational Hygiene 52:297-301.
Rezagholi M, Mathiassen SE. 2010. Cost-efficient design of occupational exposure assessment strategies—a review. The Annals of Occupational Hygiene 54:858-868.
Riedl A, Kainz W, Elmes GA. 2006. Progress in spatial data handling: 12th international symposium on spatial data handling:Springer Science & Business Media.
Roberts S. 2000. Control chart tests based on geometric moving averages. Technometrics 42:97-101.
Rukundo O, Cao H. 2012. Nearest neighbor value interpolation. arXiv preprint arXiv:12111768.
Schweinzer H, Syafrudin M. Losnus: An ultrasonic system enabling high accuracy and secure tdoa locating of numerous devices. In: Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, 2010, IEEE, 1-8.
Semple S. 2005. Assessing occupational and environmental exposure. Occupational Medicine 55:419-424.
Sghaier N, Mellouk A, Augustin B, Amirat Y, Marty J, Khoussa MEA, et al. Wireless sensor networks for medical care services. In: Proceedings of the 2011 7th International Wireless Communications and Mobile Computing Conference, 4-8 July 2011 2011, 571-576.
Sharan M, Modani M. 2007. Variable k-theory model for the dispersion of air pollutants in low-wind conditions in the surface-based inversion. Atmospheric Environment 41:6951-6963.
Singh D, Singh S, Sahu J, Srivastava S, Singh MR. 2016. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artificial Cells, Nanomedicine, and Biotechnology 44:401-409.
Spook SM, Koolhaas W, Bültmann U, Brouwer S. 2019. Implementing sensor technology applications for workplace health promotion: A needs assessment among workers with physically demanding work. BMC Public Health 19:1100.
Steggles P, Gschwind S. 2005. The ubisense smart space platform.
Stetter JR, Li J. 2008. Amperometric gas sensorsa review. Chemical Reviews 108:352-366.
Sun SJ, Zheng XC, Villalba-Diez J, Ordieres-Mere J. 2019. Indoor air-quality data-monitoring system: Long-term monitoring benefits. Sensors 19:18.
Swestka RJ. 2010. Hydrogen sulfide spatial distribution and exposure in deep-pit swine housing.
Szulczyński B, Gębicki J. 2017. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4:21.
Tait K. 1994. A commentary on the aiha position statement and white paper on a generic exposure assessment standard. American Industrial Hygiene Association Journal 55:1014.
Tan Q, Xu X. 2014. Comparative analysis of spatial interpolation methods: An experimental study. Sensors & Transducers 165:155.
Thomas GW, Sousan S, Tatum M, Liu X, Zuidema C, Fitzpatrick M, et al. 2018. Low-cost, distributed environmental monitors for factory worker health. Sensors 18:1411.
Vadali M, Ramachandran G, Mulhausen J. 2009. Exposure modeling in occupational hygiene decision making. J Occup Environ Hyg 6:353-362.
Valk Svd, Myers T, Atkinson I, Mohring K. Sensor networks in workplaces: Correlating comfort and productivity. In: Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 7-9 April 2015 2015, 1-6.
Van Groenigen J, Stein A. 1998. Constrained optimization of spatial sampling using continuous simulated annealing. Journal of Environmental Quality 27:1078-1086.
Wolberg G, Alfy I. 2002. An energy-minimization framework for monotonic cubic spline interpolation. Journal of Computational and Applied Mathematics 143:145-188.
Wolkoff P, Wilkins C, Clausen P, Nielsen G. 2006. Abstract. Indoor air 16:7-19.
Xu F, McGlothlin JD. 2003. Video exposure assessments of solvent exposures in university pharmaceutical laboratories—a pilot study. Chemical Health & Safety 10:23-28.
Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML. 2015. A survey of wireless sensor network based air pollution monitoring systems. Sensors 15:31392-31427.
Zampolli S, Elmi I, Ahmed F, Passini M, Cardinali GC, Nicoletti S, et al. 2004. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B: Chemical 101:39-46.
Zhu A, Gu Z, Hu C, Niu J, Xu C, Li Z. 2021. Political optimizer with interpolation strategy for global optimization. Plos one 16:e0251204.
Zhu C, Zheng C, Shu L, Han G. 2012. A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications 35:619-632.
Zhu L, Huang Z, Liu Y, Yue C, Ci B. 2017. The nonparametric bayesian dictionary learning based interpolation method for wsns missing data. AEU-International Journal of Electronics and Communications 79:267-274.
Zhu Y, Smith TJ, Davis ME, Levy JI, Herrick R, Jiang H. 2011. Comparing gravimetric and real-time sampling of pm2. 5 concentrations inside truck cabins. Journal of occupational and environmental hygiene 8:662-672.
Zuidema C, Sousan S, Stebounova LV, Gray A, Liu X, Tatum M, et al. 2019a. Mapping occupational hazards with a multi-sensor network in a heavy-vehicle manufacturing facility. Annals of work exposures and health 63:280-293.
Zuidema C, Stebounova LV, Sousan S, Gray A, Stroh O, Thomas G, et al. 2019b. Estimating personal exposures from a multi-hazard sensor network. Journal of Exposure Science & Environmental Epidemiology.
校內:2026-08-20公開