| 研究生: |
古慧雯 Ku, Hui-Wen |
|---|---|
| 論文名稱: |
應用田口法與數值模擬於質子交換膜燃料電池性能之參數研究 Applying Taguchi method and numerical simulation to the parametric study of PEM fuel cell performance |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 質子交換膜燃料電池 、矩形柱體 、田口法 、最佳化參數估測 |
| 外文關鍵詞: | proton exchange membrane fuel cell, cuboids, Taguchi method, optimal parameters estimation |
| 相關次數: | 點閱:220 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子交換膜燃料電池由於其工作溫度較低、高效率、無汙染、低噪音及室溫達到高功率電流密度輸出等優點,近年來被視為下一代動力系統或攜帶式電源的最佳選擇。而流道設計決定反應物與生成物在流場內的流動狀態,因此流場板設計為燃料電池關鍵元件之ㄧ。本研究係以實驗及數值方法來針對質子交換膜燃料電池流道側邊在適當間距下安裝不同排列方式之肋條,探討流場特性及熱、質傳現象對電池性能之影響。並藉由田口參數設計法建構適當的實驗參數配置,以最少的實驗次數來探討相關因子對單電池性能的影響。
本論文首先針對平滑流道之質子交換膜燃料電池,運用田口法決定六個主要操作參數(流動方向、電池溫度、陽極與陰極的加濕溫度,以及陽極與陰極的化學劑量)的最佳組合。然後分別應用三維部分截面及全流道的模型,分析矩形柱體以不同數量及排列方式橫向安裝於流道軸線上對燃料電池性能的影響,並找出較佳性能及適當之壓降。最後針對最佳數量之排列方式的設計,以三個最佳化目標的田口法進行五個主要操作參數(電池溫度、陽極與陰極的加濕溫度,以及陽極與陰極的化學劑量)進行最佳化分析,決定可獲得最大功率與最小壓降的操作參數組合。研究結果顯示,以三個最佳化目標得到最佳參數後,可增加30%功率並減少275%壓降。本文研究的結果可以提供工程師發展最佳化燃料電池性能,以及燃料電池在最佳參數組合條件下,質子交換膜燃料電池內部流場的傳輸現象,作為參考。
The major advantages of proton exchange membrane fuel cell (PEMFC) are low-temperature operation, high efficiency, no emission, low noise, and quick starting to high energy and current density under room temperature. Therefore, they are valued as the best choice in the next generation dynamic system or the portable power source in recent years. The flow field structural design decides the fluid state for reactant and product so it is the key point for fuel cell parts. This thesis is to perform an experimental and numerical study on the adequate cuboid-to-cuboid distance for different ways of cuboids installed in the side of field plates and then to investigate how the flow characteristics and the heat and mass transfer affect the performance of PEM fuel cell. This thesis also builds the disposition of the experimental parameter more completely by the Taguchi method of parameter design, to study how the various factors influence the performance of single PEM fuel cell with the least runs of experiment.
This thesis first uses the Taguchi method to determine the optimal combination of six primary operating parameters (flow orientation, temperature of fuel cell, anode and cathode humidification temperatures, anode, and cathode stoichiometric flow ratios) of a PEM fuel cell for smooth-walled channel. Moreover, a three-dimensional model of a partial cross-section and entire cell is applied to analyze the cell performance of PEM fuel cells using cuboids with various numbers and arrangements transversely inserted at the axis in the channel. The numerical results show the higher performance with reasonable pressure drop. Then, for the best number and arrangement of the cuboids in the channel, the Taguchi methodology for the three-objective parametric optimization is then used in the experiment to determine the optimal combination of five primary operating parameters (temperature of fuel cell, anode and cathode humidification temperatures, anode, and cathode stoichiometric flow ratios) for maximum electrical power and minimum pressure drops. As a result, the three-objective optimizations increase the electrical power by 30% and decrease the pressure drops by 275%. The results of this thesis may be of interest to engineers attempting to develop optimal fuel cell performance and to researchers interested in the transport phenomenon of the internal flow modification corresponding to the optimization condition in PEM fuel cells.
【1】 Suddhasatwa Basu, Recent trends in fuel cell science and technology, New York, Springer, 2007.
【2】 Kazim A, Introduction of PEM fuel-cell vehicles in the transportation sector of the United Arab Emirates, Applied Energy 74 (2003) 125–33.
【3】 Contreras A, Posso F, Guervos E., Modeling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela, Applied Energy 87 (2010) 1376–85.
【4】 Frano Barbir, PEM Fuel Cells: Theory and practice, Elsevier Academic Press, 2005.
【5】 Fuel cell handbook, National energy technology laboratory U.S. Department of Energy, University Press of the Pacific, 2005.
【6】 M.A.J. Cropper, S. Geiger, D.M. Jollie, Fuel cells: a survey of current developments, J. Power Sources 131 (2004) 57–61.
【7】 S.M. Javaid Zaidi, Takeshi Matsuura, Polymer membrane for fuel cells, New York, Springer, 2009.
【8】 J. A. Kolde, B. Bahar, M. S. Wilson, T.A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, Proc. Electrochemical Society, 23 (1995) 193–201.
【9】 J. Park, X. Li, Experimental and numerical investigation of reactant flow in flow channels and leakage cross flow through gas diffusion layers in PEM fuel cells, ECS Transaction 5 (2007) 37–48.
【10】 J. Larminie, A. Dicks, Fuel cell systems explained, Wiley, Chichester, 2000.
【11】 Yun Wang, Ken S. Chen, Jeffrey Mishler, Sung Chan Cho, Xavier Cordobes Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy 88 (2011) 981–1007.
【12】 S. Shimpalee, S. Greenway, J.W. Van Zee, The impact of channel path length on PEMFC flow-field design, J. Power Sources 160 (2006) 398–406.
【13】 Wei Sun, Brant A. Peppley, Kunal Karan, Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer, J. Power Sources 144 (2005) 42–53.
【14】 C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells, Electrochemistry Communications 9 (2007) 497–503.
【15】 D.H. Jeon, S. Greenway, S. Shimpalee, J.W. Van Zee, The effect of serpentine flow-field designs on PEM fuel cell performance, Int. J. Hydrogen Energy 33 (2008) 1052–1066.
【16】 Wang C.T., Hu Y.C., Zheng P.L., Novel biometric flow slab design for improvement of PEMFC performance, Applied Energy 87 (2010) 1366–1375.
【17】 Ching-Yi Hsueh, Hsin-Sen Chu, Wei-Mon Yan, Chiun-Hsun Chen, Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design, Applied Energy 87 (2010) 3137–3147.
【18】 Young-Gi Yoon, Won-Yong Lee, Gu-Gon Park, Tae-HyunYang, Chang-Soo Kim, Effects of channel and rib widths of flow-field plates on the performance of a PEMFC, Int. J. Hydrogen Energy 30 (2005) 1363–1366.
【19】 Jer-Huan Jang, Wei-MonYan, Hung-Yi Li, Wei-Che Tsai, Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields, Int. J. Hydrogen Energy 33 (2008) 156–164.
【20】 Hui-Chung Liu, Wei-Mon Yan, Chyi-Yeou Soong, Falin Chen, Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell, J. Power Sources 142 (2005) 125–133.
【21】 Chyi-Yeou Soong, Wei-Mon Yan, C.-Y Tseng, Hui-Chung Liu, Falin Chen, H.S. Chu, Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels, J. Power Sources 143 (2005) 36–47.
【22】 Baschuk J.J., Li X, A comprehensive, consistent and systematic mathematical model of PEM fuel cells, Applied Energy 86 (2009) 181–193.
【23】 Shiang-Wuu Perng, Horng-Wen Wu, Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC, Applied Energy 87 (2010) 1386–1399.
【24】 Shiang-Wuu Perng, Horng-Wen Wu, Tswen-Chyuan Jue, Kuo-Chih Cheng, Numerical predictions of a PEM fuel cell performance enhancement by a rectangular cylinder installed transversely in the flow channel. Applied Energy 86 (2009) 1541–1554.
【25】 Shiang-Wuu Perng, Horng-Wen Wu, Effects of internal flow modification on the cell performance enhancement of a PEM fuel cell, J. Power Sources 175 (2008) 806–816.
【26】 Koan-Yuh Chang, Huan-Jung Lin, Pang-Chia Chen, The optimal performance estimation for an unknown PEMFC based on the Taguchi method and a generic numerical PEMFC model, J. Hydrogen Energy 34 (2009) 1900–1998.
【27】 R.C. Dante, José L. Escamilla, V. Madrigal, T. Theuss, J. de Dios Calderón, O. Solorza, Rubén Rivera, Fractional factorial design of experiments for PEM fuel cell performances improvement, Int. J. Hydrogen Energy 28 (2003) 343–348.
【28】 Wei-Lung Yu, Sheng-Ju Wu, Sheau-Wen Shah, Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments, Int. J. Hydrogen Energy 33 (2008) 2311–2322.
【29】 Sheng-Ju Wu, Sheau-Wen Shah, Wei-Lung Yu, Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network, Renew. Energy 34 (2009) 135–144.
【30】 Wei-Lung Yu, Sheng-Ju Wu, Sheau-Wen Shah, Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks, Int. J. Hydrogen Energy 35 (2011) 11138–11147.
【31】 S. Kaytakoğlu, L. Akyalçın, Optimization of parametric performance of a PEMFC, Int. J. Hydrogen Energy 32 (2007) 4418–4423.
【32】 M.F. Torchio, M.G. Santarelli, A. Nicali, Experimental analysis of the CHP performance of a PEMFC stack by a 24 factorial design, J. Power Sources 149 (2005) 33–43.
【33】 M. Grujicic, K.M. Chittajallu, Design and optimization of polymer electrolyte membrane (PEM) fuel cells, Applied Surface Science 227 (2004) 56–72.
【34】 M. Grujicic, K.M. Chittajallu, Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells, Chemical Engineering Science 59 (2004) 5883–5895.
【35】 N. Logothetis, A. Haigh, Characterizing and optimizing multi-response processes by Taguchi method, Quality and Reliability Engineering International 4 (1988) 159–169.
【36】 J. J. Pignatiello, Strategies for robust multi-response quality engineering, IIE Transactions 25 (1993) 5–15.
【37】 S. Maghsoodloo, The exact relation of Taguchi’s signal-to-noise ratio to his quality loss function, J. Quality Technology 22 (1990) 57–67.
【38】 C.-T. Su, L.-I. Tong, Multi-response robust design by principal component analysis, Total Quality Management 8 (1997) 409–416.
【39】 L.-H. Chen, Designing robust products with multiple quality characteristics, Computers Operations Research 24 (1997) 937–944.
【40】 D. M. Osborne, R. L. Armacost, Review of techniques for optimizing multiple quality characteristics in product development, Computers and Industrial Engineering 31 (1996) 107–110.
【41】 G. G. Vining, A compromise approach to multi-response optimization, Journal of Quality Technology 30 (1998). 309–313.
【42】 Robert Byron Bird, Warren E. Stewart, Transport Phenomena, Wiley, New York, 2007.
【43】 S. Um, C.Y. Wang, K.S. Chen, Computational fluid dynamics modeling of proton exchange membrane fuel cells, J. Electrochem. Soc. 147 (2000) 4485–4493.
【44】 J. Bear, J.M. Buchlin, Modeling and application of transport phenomena in porous media, Kluwer Academic Publishers, Boston, MA, 1991.
【45】 M. J. Lampinen, M. Fomino, Analysis of free energy and entropy changes for half-cell reactions, J. Electrochem. Soc. 140 (1993) 3537–3546.
【46】 Guilin Hu, Jianren Fan, Song Chen, Yongjiang Liu, Kefa Cen, Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields, J. Power Sources 136 (2004) 1–9.
【47】 P. Costamagna, K. Honegger, Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization, J. Electrochem. Soc. 145 (1998) 3995–4007.
【48】 Hyunchul Ju, Chao-Yang Wang, Experimental validation of a PEM fuel cell model by current distribution data, J. Electrochem. Soc. 151 (2007) A1954–A1960.
【49】 Stockie J.M., Promislow K., Wetton B.R., A finite volume method for multicomponent gas transport in a porous fuel cell electrode, Int. J. Numerical Methods in Fluids 41 (2003) 577–599.
【50】 Elaine S. Oran, Jay P. Boris, Numerical simulation of reactive flow, Cambridge University Press, 2001.
【51】 Abernethy, R.B., Benedict, R.P. and Dowdell, R.B., ASME measurement uncertainty, Transactions of the ASME: Journal of Fluids Engineering 107 (1985) 161–164.
【52】 Gyung Jin Park, Analytic methods for design practice, Springer, 2007.
【53】 Ranjit K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers, 1990.
【54】 K. Pearson, On lines and planes of closest fit to systems of points in spaces, Philos. Mag. Series 62 (1901) 559–572.
【55】 H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol. 24 (1933) 417–441.
【56】 M. S. Phadke, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, NJ, 1989.
【57】 G. Taguchi, Y. Yokoyama, Y. Wu, Taguchi Methods: Design of experiments, ASI Press, Chicago, 1993.
【58】 P. J. Ross, Taguchi techniques for quality engineering, McGraw-Hill, New York, 1988.
【59】 G. Taguchi, Quality engineering in production systems, McGraw-Hill, New York, 1989.
【60】 M. Venkatraman, S. Shimpalee, J.W. Van Zee, Sung In Moon, C.W. Extrand, Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops, Int. J. Hydrogen Energy 34 (2009) 5522–5528.