簡易檢索 / 詳目顯示

研究生: 王俊博
Wang, Jun-Bo
論文名稱: 利用流體化床均質顆粒化技術從鈷硼廢水中回收鈷及其應用
Production and reclamation of Basic Cobalt Carbonate and Cobalt Oxide Hydroxide from Co-B wastewater using Fluidized Bed Homogeneous Granulation technology
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 159
中文關鍵詞: 流體化床顆粒化鹼式碳酸鈷羥基氧化鈷
外文關鍵詞: Fluidized-bed homogeneous granulation, basic cobalt carbonate, cobalt oxide hydroxide
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在日常生活中鈷扮演著重要的角色,不論是色玻璃、陶瓷、油漆甚至是磁鐵、研磨與人工關節到處都能發現到運用鈷的蹤跡,並且在半導體業的蓬勃發展下,會產出含有高濃度鈷、硼的廢水,由於本實驗室已有相當完善的除硼技術,所以本研究將會針對溶液中的鈷進行研究再結合本實驗室的除硼技術對實廠廢水進行處理。本研究會以化學沉澱法來區別不同pH值溶液中鈷離子去除的程度,並在了解產出的沉澱物種下,將實驗轉往流體化床均質顆粒化技術(FBHG)來做進一步操作,FBHG為一種能有效去除重金屬的高級廢水處理技術,此技術能夠解決傳統混凝沉澱法會生成高含水量汙泥的問題,並能夠在不加入額外擔體的操作條件下生成高純度、低含水量的結晶顆粒來回收廢水中的重金屬元素,並且在獲得FBHG系統操作的最適化條件後,最終能將高濃度鈷硼廢水處理至符合台灣工業放流水標準。
    本實驗分為兩大階段,第一階段會以1,000 mg-Co/L的含鈷合成廢水作為研究目標,利用FBHG技術分別以碳酸作為沉澱劑合成鹼式碳酸鈷(Co(CO3)・x Co(OH)2・yH2O),以及使用次氯酸鈉(NaClO)作為氧化劑合成羥基氧化鈷(CoOOH)。
    於FBHG合成鹼式碳酸鈷的系統中,對pHe、CO3/Co、LCo、HRT與床高的變因進行討論,在最適化的操作條件下(CCo,in = 1,000 ± 50 mg-Co/L, CO3/Co = 1.8 ± 0.2, pHe = 9.0 ± 0.2, HRT = 10.89 min, U = 38.19 m/hr, H = 60 cm),可達到98.2%的鈷造粒率(GR)與98.3%的鈷去除率(TR),並將出流口鈷濃度降至9.01 mg-Co/L。
    於FBHG合成羥基氧化鈷的系統中,則是對pHe、LCo、HRT與床高的變因進行討論,在最適化的操作條件下(CCo,in = 1,010 ± 20 mg-Co/L, CO3/Co = 0.90 ± 0.05, Clfree/Co = 1.05 ± 0.05, pHe = 6.7 ± 0.2, HRT = 16.3 min, U = 35.64 m/hr, H = 60 cm),可達到92.7%的鈷造粒率(GR)與97.2%的鈷去除率(TR),並將出流口鈷濃度降至13.98 mg-Co/L,代表鹼式碳酸鈷系統比起羥基氧化鈷系統有著較優異的結晶造粒能力。
    接著,針對FBHG技術所產出的產品鑑定,透過SEM分析了解兩種顆粒皆為內外部結晶結構有所差異的均質結晶物,以XRD、FTIR、EDS、TGA、XPS等分析,可以得知利用碳酸系統的結晶產品為Co(CO3)・xCo(OH)2・yH2O;利用次氯酸鈉系統的結晶產物為CoOOH。
    研究的最終階段則是透過FBHG技術所得之的最適化操作條件處理初濃度分別為2,000 mg-Co/L與3,000 mg-B/L的實廠廢水,結合除硼的相關文獻最終以流體化床均質顆粒化技術→化學沉澱法→鋇系化學過氧沉澱法的三步驟方式將鈷濃度處理至低於1 mg-Co/L、硼濃度低於3 mg-B/L。

    Cobalt (II) is widely found in industrial effluents from such as manufacturings of lithium battery, magnetic material, alloy and catalyst. This work recovered the cobalt in the solution as basic cobalt carbonate (Co2CO3(OH)2) and cobalt oxyhydroxide pellets using a fluidized-bed homogeneous granulation process (FBHG). In the recovery of basic cobalt carbonate particle, the experiment was conducted using sodium bicarbonate as the precipitant at conditions of CCo,in = 1,000 ± 50 mg-Co/L, CO3/Co = 1.8 ± 0.2, pHe = 9.0 ± 0.2, HRT = 10.89 min, U = 38.19 m/hr, H = 60 cm. The resulted granulation ratio (GR) and total removal (TR) of cobalt could reach up to 98.2% and 98.3%, respectively. XRD and FTIR indicated that the crystal phase of the recovered pellets was Co-CO3•xCo(OH)2•yH2O. In the recovery of cobalt oxyhydroxide, sodium hypochlorite was used as an oxidant. FBHG was operated under conditions of CCo,in = 1,010 ± 20 mg-Co/L, CO3/Co = 0.90 ± 0.05、Clfree/Co = 1.05 ± 0.05, pHe = 6.7 ± 0.2, HRT = 16.3 min, U = 35.64 m/hr, H = 60 cm, the GR and TR could reach up to 92.7% and 97.2%, respectively. XRD and FTIR revealed that the particle of FBHG was CoOOH with crys-talline water. FBHG was then applied to treat a real wastewater containing cobalt and boron, which were 2000 mg/L and 3000 mg/L, respectively. Consequently, the cobalt and boron concentrations in the effluent could be less than 1 mg/L and 3 mg/L, respectively.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 4 2-1 自然界中的鈷 4 2-2 鈷的應用與污染源 6 2-3 鈷的危害及法規標準 10 2-4 水中鈷之處理方法 12 2-4-1 化學混凝/沉澱法 12 2-4-2 離子交換法 14 2-4-3 吸附法 15 2-4-4 薄膜分離法 16 2-5 流體化床結晶 (Fluidized-Bed Crystallyzation) 技術 19 2-5-1 流體化床顆粒化(Fluidized-Bed Granulation, FBG)技術 19 2-5-2 流體化床均質顆粒化(Fluidized-Bed Homogeneous Granulation, FBHG)技術 23 2-5-3 流體化床技術處理含重金屬離子、陰離子的文獻整理 25 2-6 結晶學 28 2-6-1 結晶與沉澱 28 2-6-1 成核理論 29 2-6-2 介穩區概念 31 2-7 碳酸於水中之平衡關係 34 2-7-1 密閉系統中碳酸根平衡關係 34 2-7-2 開放系統中碳酸根平衡關係 36 2-8 鈷於碳酸系統中之溶解曲線圖 38 2-9 鈷於次氯酸鈉溶液中之溶解曲線圖 43 第三章 實驗設備、材料與方法 45 3-1 研究架構與流程 45 3-2 實驗設備介紹 48 3-2-1 凝集試驗機 48 3-2-2 流體化床反應器 48 3-3 符號及公式定義 50 3-3-1 化學沉澱法之符號及公式定義 50 3-3-2 FBHG研究之符號及公式定義 51 3-4 實驗藥品 53 3-5 實驗步驟 54 3-5-1 化學沉澱法實驗 54 3-5-2 流體化床均質顆粒化技術(FBHG)實驗 58 3-5-3 鋇系化學過氧沉澱法(COP)除硼實驗 60 3-6 檢測儀器與分析方法 61 3-6-1 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES) 61 3-6-2 總有機碳分析儀 (Total Organic Carbon Analyzer, TOC) 61 3-6-3 X光繞射分析儀 (X-ray Diffraction analyzer, XRD) 62 3-6-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 62 3-6-5 傅立葉轉換式紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 63 3-6-6 餘氯總氯分析儀 (Total Chlorine and Free Chlorine analyzer) 63 3-6-7 X射線光電子能譜儀(X-Ray Photoelectron Sprectroscope, XPS) 64 第四章 結果與討論 65 4-1 Jar-test合成鹼式碳酸鈷研究之pHf探討 65 4-1-1 Jar-test合成鹼式碳酸鈷研究的硼離子干擾影響探討 70 4-2 FBHG合成鹼式碳酸鈷顆粒研究之變因探討 72 4-2-1 pHe對FBHG的影響 74 4-2-2 CO3/Co對FBHG的影響 77 4-2-3 HRT對FBHG的影響 80 4-2-4 截面負荷對FBHG的影響 83 4-2-5 床高對FBHG的影響 88 4-2-6 鹼式碳酸鈷均質顆粒產品鑑定 90 4-3 Jar-test合成羥基氧化鈷(CoOOH)研究之變因探討 100 4-3-1 pHf對Jar-test的影響 100 4-3-2 [Free chlorine]i /[Co]對Jar-test的影響 104 4-3-3 Jar-test合成羥基氧化鈷研究的硼離子干擾影響探討 108 4-3-4 羥基氧化鈷(CoOOH)沉澱和氧化還原機制 110 4-4 FBHG合成羥基氧化鈷(CoOOH)顆粒研究之變因探討 112 4-4-1 pHe對FBHG的影響 113 4-4-2 HRT對FBHG的影響 117 4-4-3 截面負荷對FBHG的影響 119 4-4-4 床高對FBHG的影響 122 4-4-5 羥基氧化鈷均質顆粒產品鑑定 124 4-5 利用流體化床技術處理實廠高濃度鈷硼廢水 137 4-5-1 以FBHG合成鹼式碳酸鈷技術處理實廠廢水 137 4-5-2 以FBHG合成羥基氧化鈷技術處理實廠廢水 140 4-6 流體化床技術處理鈷離子後出流水的後續處理 142 4-6-1 流體化床合成鹼式碳酸鈷系統的後續實廠廢水處理 142 4-6-2 流體化床合成羥基氧化鈷系統的後續實廠廢水處理 144 第五章 結論與建議 146 5-1 結論 146 5-2 建議 148 參考文獻 149

    [1] Ohkoshi, S. I., Ikeda, S., Hozumi, T., Kashiwagi, T., & Hashimoto, K. (2006). Pho-toinduced magnetization with a high curie temperature and a large coercive field in a cyano-bridged cobalt− tungstate bimetallic assembly. Journal of the American Chemical Society, 128(16), 5320-5321.Christensen, Jytte Molin, and Otto Melchior Poulsen. "A 1982–1992 sur-veillance programme on Danish pottery painters. Bio-logical levels and health effects following exposure to soluble or insoluble cobalt compounds in cobalt blue dyes." Science of the total environment 150.1-3 (1994): 95-104.
    [2] 中華民國行政院環保署,"化工業放流水標準",2014
    [3] Moskalyk, R. R., & Alfantazi, A. M. (2000). Review of present cobalt recovery practice. Mining, Metallurgy & Exploration, 17(4), 205-216.
    [4] Cailteux, J. L. H., Kampunzu, A. B., Lerouge, C., Kaputo, A. K., & Milesi, J. P. (2005). Genesis of sediment-hosted stratiform copper–cobalt deposits, central Afri-can Copperbelt. Journal of African Earth Sciences, 42(1-5), 134-158.
    [5] Haxel, G. (2002). Rare earth elements: critical resources for high technology (Vol. 87, No. 2). US Department of the Interior, US Geological Survey.
    [6] Slack, J. F., Kimball, B. E., & Shedd, K. B. (2017). Cobalt (No. 1802-F). US Geo-logical Survey.
    [7] Nicholls, D. (2013). The chemistry of iron, cobalt and nickel: comprehensive inor-ganic chemistry (Vol. 24). Elsevier.
    [8] Mimani, T., & Ghosh, S. (2000). Combustion synthesis of cobalt pigments: Blue and pink. Current Science, 892-896.
    [9] Donaldson, J. D., & Beyersmann, D. (2000). Cobalt and cobalt com-pounds. Ullmann's Encyclopedia of Industrial Chemistry.
    [10] Ohkoshi, S. I., Ikeda, S., Hozumi, T., Kashiwagi, T., & Hashimoto, K. (2006). Pho-toinduced magnetization with a high curie temperature and a large coercive field in a cyano-bridged cobalt − tungstate bimetallic assembly. Journal of the American Chemical Society, 128(16), 5320-5321.
    [11] Burukhin, A., Brylev, O., Hany, P., & Churagulov, B. R. (2002). Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ionics, 151(1-4), 259-263.
    [12] Smith, G. B., Ignatiev, A., & Zajac, G. (1980). Solar selective black cobalt: prepara-tion, structure, and thermal stability. Journal of applied physics, 51(8), 4186-4196.
    [13] Merian, E. (1984). Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt beryllium, arsenic, cadmium and selenium, and their deriva-tives.
    [14] Jha, M. K., Kumari, A., Jha, A. K., Kumar, V., Hait, J., & Pandey, B. D. (2013). Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste management, 33(9), 1890-1897.
    [15] Huang, J. H., Kargl-Simard, C., Oliazadeh, M., & Alfantazi, A. M. (2004). pH-Controlled precipitation of cobalt and molybdenum from industrial waste efflu-ents of a cobalt electrodeposition process. Hydrometallurgy, 75(1-4), 77-90.
    [16] Banda, W., Morgan, N., & Eksteen, J. J. (2002). The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag. Minerals Engineer-ing, 15(11), 899-907.
    [17] Raisoni, P. R., & Dixit, S. G. (1988). Leaching of cobalt and molybdenum from a Co-Mo/γ-Al2O3 hydrodesulphurization catalyst waste with aqueous solutions of sul-phur dioxide. Minerals engineering, 1(3), 225-234.
    [18] Becker, D. E., Smith, S. E., & Loosli, J. K. (1949). Vitamin B12 and cobalt defi-ciency in sheep. Science (Washington), 110, 71-72.
    [19] Lauwerys, R., & Lison, D. (1994). Health risks associated with cobalt exposure—an overview. Science of the Total Environment, 150(1-3), 1-6.
    [20] Reisenauer, H. M. (1960). Cobalt in nitrogen fixation by a leg-ume. Nature, 186(4722), 375-6.
    [21] Keegan, G. M., Learmonth, I. D., & Case, C. (2008). A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Critical reviews in toxicology, 38(8), 645-674.
    [22] Kesteloot, H., Roelandt, J., Willems, J., Claes, J. H., & Joossens, J. V. (1968). An enquiry into the role of cobalt in the heart disease of chronic beer drink-ers. Circulation, 37(5), 854-864.
    [23] Lison, D. (1996). Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Critical reviews in toxicology, 26(6), 585-616.
    [24] Banza, C. L. N., Nawrot, T. S., Haufroid, V., Decrée, S., De Putter, T., Smolders, E., ... & Nemery, B. (2009). High human exposure to cobalt and other metals in Ka-tanga, a mining area of the Democratic Republic of Congo. Environmental re-search, 109(6), 745-752.
    [25] Scansetti, G., Botta, G. C., Spinelli, P., Reviglione, L., & Ponzetti, C. (1994). Ab-sorption and excretion of cobalt in the hard metal industry. Science of the total envi-ronment, 150(1-3), 141-144.
    [26] Vasudevan, S., Lakshmi, J., & Sozhan, G. (2012). Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicological & Environmental Chemis-try, 94(10), 1930-1940.
    [27] 中華民國行政院環保署,"空氣汙染防制法",2013
    [28] 中華人民共和國環境保護部,"銅、鎳、鈷工業污染物排放標準",2010
    [29] 中華人民共和國北京市環境保護部,"水汙染物綜合排放標準",2013
    [30] Harvey, R., Hannah, R., & Vaughan, J. (2011). Selective precipitation of mixed nickel–cobalt hydroxide. Hydrometallurgy, 105(3-4), 222-228.
    [31] 黃晟晏,"以流體化床均質結晶技術從含鎳廢水中合成回收鹼是碳酸鎳及鹼式氧化鎳",成功大學化學工程學系學位論文,pp1-165,2017
    [32] Kang, S. Y., Lee, J. U., Moon, S. H., & Kim, K. W. (2004). Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthe-sized wastewater. Chemosphere, 56(2), 141-147.
    [33] Yüzer, H., Kara, M., Sabah, E., & Çelik, M. S. (2008). Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. Journal of hazardous materials, 151(1), 33-37.
    [34] Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective re-moval of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91-106.
    [35] Grinstead, R. R. (1984). Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195. Hydrometallurgy, 12(3), 387-400.
    [36] Deepatana, A., & Valix, M. (2006). Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophos-phonate chelating resin. Journal of hazardous materials, 137(2), 925-933.
    [37] Mahmoud, A., & Hoadley, A. F. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute indus-trial wastewater. Water research, 46(10), 3364-3376.
    [38] Priya, P. G., Basha, C. A., Ramamurthi, V., & Begum, S. N. (2009). Recovery and reuse of Ni (II) from rinsewater of electroplating industries. Journal of Hazardous Materials, 163(2-3), 899-909.
    [39] Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry, 4(4), 361-377.
    [40] Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a re-view. Journal of environmental management, 92(3), 407-418.
    [41] Zamboulis, D., Peleka, E. N., Lazaridis, N. K., & Matis, K. A. (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology & Biotechnology, 86(3), 335-344.
    [42] Abbas, M., Kaddour, S., & Trari, M. (2014). Kinetic and equilibrium studies of co-balt adsorption on apricot stone activated carbon. Journal of Industrial and Engi-neering Chemistry, 20(3), 745-751.
    [43] Kara, M., Yuzer, H., Sabah, E., & Celik, M. S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water research, 37(1), 224-232.
    [44] Al-Shahrani, S. S. (2014). Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria engineering journal, 53(1), 205-211.
    [45] Sanchez, A. G., Ayuso, E. A., & De Blas, O. J. (1999). Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay minerals, 34(3), 469-477.
    [46] Travieso, L., Pellón, A., Benıtez, F., Sánchez, E., Borja, R., O’Farrill, N., & Weiland, P. (2002). BIOALGA reactor: preliminary studies for heavy metals remov-al. Biochemical Engineering Journal, 12(2), 87-91.
    [47] Bhatnagar, A., Minocha, A. K., & Sillanpää, M. (2010). Adsorptive removal of co-balt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engi-neering Journal, 48(2), 181-186.
    [48] Peigneur, P., Maes, A., & Cremers, A. (1975). Heterogeneity of charge density dis-tribution in montmorillonite as inferred from cobalt adsorption. Clays and Clay min-erals, 23(1), 71-75.
    [49] Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155.
    [50] Netzer, A., & Hughes, D. E. (1984). Adsorption of copper, lead and cobalt by acti-vated carbon. Water Research, 18(8), 927-933.
    [51] Kurbatov, M. H., Wood, G. B., & Kurbatov, J. D. (1951). Isothermal adsorption of cobalt from dilute solutions. The Journal of Physical Chemistry, 55(7), 1170-1182.
    [52] Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.
    [53] He, M., Zhu, Y., Yang, Y., Han, B., & Zhang, Y. (2011). Adsorption of cobalt (II) ions from aqueous solutions by palygorskite. Applied Clay Science, 54(3-4), 292-296.
    [54] Suhasini, I. P., Sriram, G., Asolekar, S. R., & Sureshkumar, G. K. (1999). Biosorp-tive removal and recovery of cobalt from aqueous systems. Process Biochemis-try, 34(3), 239-247.
    [55] Caramalău, C., Bulgariu, L., & Macoveanu, M. (2009). Cobalt (II) removal from aqueous solutions by adsorption on modified peat moss. Chemical Bulletin of “POLITEHNICA” University of Timisoara, 54(68), 13-17.
    [56] Fang, F., Kong, L., Huang, J., Wu, S., Zhang, K., Wang, X., ... & Liu, J. (2014). Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. Journal of hazardous materials, 270, 1-10.
    [57] Kuyucak, N., & Volesky, B. (1989). The mechanism of cobalt biosorp-tion. Biotechnology and bioengineering, 33(7), 823-831.
    [58] Musapatika, E. T., Onyango, M. S., & Aoyi, O. (2010). Cobalt (II) removal from synthetic wastewater by adsorption on South African coal fly ash. South African Journal of Science, 106(9-10), 1-7.
    [59] Imessaoudene, D., Hanini, S., Bouzidi, A., & Ararem, A. (2016). Kinetic and ther-modynamic study of cobalt adsorption by spent coffee. Desalination and Water Treatment, 57(13), 6116-6123.
    [60] Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a re-view. Journal of environmental management, 92(3), 407-418.
    [61] Akita, S., Castillo, L. P., Nii, S., Takahashi, K., & Takeuchi, H. (1999). Separation of Co (II)/Ni (II) via micellar-enhanced ultrafiltration using organophosphorus acid ex-tractant solubilized by nonionic surfactant. Journal of Membrane Science, 162(1-2), 111-117.
    [62] Karate, V. D., & Marathe, K. V. (2008). Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. Journal of haz-ardous materials, 157(2-3), 464-471.
    [63] Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K., & Matis, K. A. (2003). Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37(16), 4018-4026.
    [64] Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical engineering journal, 118(1-2), 83-98.
    [65] Kasaini, H., Nakashio, F., & Goto, M. (1998). Application of emulsion liquid mem-branes to recover cobalt ions from a dual-component sulphate solution containing nickel ions. Journal of membrane science, 146(2), 159-168.
    [66] Verbeken, K., Vanheule, B., Pinoy, L., & Verhaege, M. (2009). Cobalt removal from waste‐water by means of supported liquid membranes. Journal of Chemical Tech-nology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(5), 711-715.
    [67] Kim, H. J., Baek, K., Kim, B. K., & Yang, J. W. (2005). Humic substance-enhanced ultrafiltration for removal of cobalt. Journal of hazardous materials, 122(1-2), 31-36.
    [68] Dambies, L., Jaworska, A., Zakrzewska-Trznadel, G., & Sartowska, B. (2010). Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. Journal of hazardous materials, 178(1-3), 988-993.
    [69] Shao, J., Qin, S., Li, W., & He, Y. (2013). Simultaneous recovery of nickel and co-balt from aqueous solutions using complexation-ultrafiltration process. Separation Science and Technology, 48(18), 2735-2740.
    [70] Al-Jlil, S. A., & Alharbi, O. A. (2010). Comparative study on the use of reverse os-mosis and adsorption process for heavy metals removal from wastewater in Saudi Arabia. Research Journal of Environmental Sciences, 4(4), 400-406.
    [71] Kryvoruchko, A. P., Atamanenko, I. D., & Yurlova, L. Y. (2004). Concentra-tion/purification of Co (II) ions by reverse osmosis and ultrafiltration combined with sorption on clay mineral montmorillonite and cation-exchange resin KU-2-8n. Journal of membrane science, 228(1), 77-81.
    [72] Nguyen, N. C., Chen, S. S., Hsu, H. T., & Li, C. W. (2013). Separation of three di-valent cations (Cu2+, Co2+ and Ni2+) by NF membranes from pHs 3 to 5. Desalination, 328, 51-57.
    [73] Choo, K. H., Kwon, D. J., Lee, K. W., & Choi, S. J. (2002). Selective removal of cobalt species using nanofiltration membranes. Environmental science & technolo-gy, 36(6), 1330-1336.
    [74] Bouranene, S., Fievet, P., Szymczyk, A., Samar, M. E. H., & Vidonne, A. (2008). Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. Journal of Membrane Sci-ence, 325(1), 150-157.
    [75] Graveland, A., Van Dijk, J. C., De Moel, P. J., & Oomen, J. H. C. M. (1983). De-velopments in water softening by means of pellet reactors. Journal‐American Water Works Association, 75(12), 619-625.
    [76] 詹豐隆, "含鎳廢水流體化床結晶處理技術之應用," 臺灣大學環境工程學研究所學位論文, pp. 1-82, 2004.
    [77] 黃炯秦, "以鋇系化學過氧沉澱法結合流體化床均質顆粒化技術回收含硼廢水中的硼," 成功大學化學工程學系學位論文, pp. 1-110, 2016.
    [78] Zhou, P., Huang, J. C., Li, A. W., & Wei, S. (1999). Heavy metal removal from wastewater in fluidized bed reactor. Water Research, 33(8), 1918-1924.
    [79] Lee, C. I., & Yang, W. F. (2005). Heavy metal removal from aqueous solution in sequential fluidized-bed reactors. Environmental technology, 26(12), 1345-1354.
    [80] Salcedo, A. F. M., Ballesteros, F. C., Vilando, A. C., & Lu, M. C. (2016). Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous flu-idized bed granulation process. Separation and Purification Technology, 169, 128-136.
    [81] Chen, C. S., Shih, Y. J., & Huang, Y. H. (2015). Remediation of lead (Pb (II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 279, 120-128.
    [82] Salcedo, A. F. M., Ballesteros, F. C., Vilando, A. C., & Lu, M. C. (2016). Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous flu-idized bed granulation process. Separation and Purification Technology, 169, 128-136.
    [83] Ballesteros, F. C., Salcedo, A. F. S., Vilando, A. C., Huang, Y. H., & Lu, M. C. (2016). Removal of nickel by homogeneous granulation in a fluidized-bed reac-tor. Chemosphere, 164, 59-67.
    [84] Zhou, P., Huang, J. C., Li, A. W., & Wei, S. (1999). Heavy metal removal from wastewater in fluidized bed reactor. Water Research, 33(8), 1918-1924.
    [85] Udomkitthaweewat, N., Anotai, J., Choi, A. E. S., & Lu, M. C. (2019). Removal of zinc based on a screw manufacturing plant wastewater by fluidized-bed homogene-ous granulation process. Journal of Cleaner Production, 230, 1276-1286.
    [86] Su, C. C., Dulfo, L. D., Dalida, M. L. P., & Lu, M. C. (2014). Magnesium phosphate crystallization in a fluidized-bed reactor: effects of pH, Mg: P molar ratio and seed. Separation and Purification Technology, 125, 90-96.
    [87] Shimamura, K., Hirasawa, I., Ishikawa, H., & Tanaka, T. (2006). Phosphorus recov-ery in a fluidized bed crystallization reactor. Journal of chemical engineering of Ja-pan, 39(10), 1119-1127.
    [88] de Luna, M. D. G., Bellotindos, L. M., Asiao, R. N., & Lu, M. C. (2015). Removal and recovery of lead in a fluidized-bed reactor by crystallization pro-cess. Hydrometallurgy, 155, 6-12.
    [89] Lee, C. I., Yang, W. F., & Hsieh, C. I. (2004). Removal of Cu (II) from aqueous so-lution in a fluidized-bed reactor. Chemosphere, 57(9), 1173-1180.
    [90] Bayon, L. L. E., Ballesteros Jr, F. C., Garcia-Segura, S., & Lu, M. C. (2019). Water reuse nexus with resource recovery: On the fluidized-bed homogeneous crystalliza-tion of copper and phosphate from semiconductor wastewater. Journal of Cleaner Production, 236, 117705.
    [91] Su, C. C., Reano, R. L., Dalida, M. L. P., & Lu, M. C. (2014). Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed. Chemosphere, 105, 100-105.
    [92] Bayon, L., Ballesteros, F., Segura-Garcia, S., & Lu, M. C. Cobalt and Phosphorous Recovery from Semiconductor Wastewater through Homogeneous Crystallization of Cobalt Phosphate in a Fluidized-bed Reactor.
    [93] Priambodo, R., Tan, Y. L., Shih, Y. J., & Huang, Y. H. (2017). Fluidized-bed crys-tallization of iron phosphate from solution containing phosphorus. Journal of the Taiwan Institute of Chemical Engineers, 80, 247-254.
    [94] Mahasti, N. N., Shih, Y. J., & Huang, Y. H. (2019). Removal of iron as oxyhydrox-ide (FeOOH) from aqueous solution by fluidized-bed homogeneous crystalliza-tion. Journal of the Taiwan Institute of Chemical Engineers, 96, 496-502.
    [95] Mahasti, N. N., Shih, Y. J., Vu, X. T., & Huang, Y. H. (2017). Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) pro-cess. Journal of the Taiwan Institute of Chemical Engineers, 78, 378-385.
    [96] Vilando, A. C., Caparanga, A. R., Huang, Y. H., & Lu, M. C. (2017). Tohdite re-covery from water by fluidized-bed homogeneous granulation process. Desalin Wa-ter Treat, 96, 224-230.
    [97] Aldaco, R., Garea, A., & Irabien, A. (2006). Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand. Industrial & engineering chemistry research, 45(2), 796-802.
    [98] Su, C. C., Abarca, R. R. M., de Luna, M. D. G., & Lu, M. C. (2014). Phosphate re-covery from fluidized-bed wastewater by struvite crystallization technology. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2395-2402.
    [99] Shimamura, K., Tanaka, T., Miura, Y., & Ishikawa, H. (2003). Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology, 48(1), 163-170.
    [100] Pahunang, R. R., Ballesteros Jr, F. C., de Luna, M. D. G., Vilando, A. C., & Lu, M. C. (2019). Optimum recovery of phosphate from simulated wastewater by un-seeded fluidized-bed crystallization process. Separation and Purification Technolo-gy, 212, 783-790.
    [101] Dirksen, J. A., & Ring, T. A. (1991). Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chemical Engineering Sci-ence, 46(10), 2389-2427.
    [102] Chen, C. L. (2006). Comparative Influencing Effect of Hydrodynamics on Crystallization Kinetics in Tapered Fluidized-bed Crystallizer.
    [103] 張華強, "以流體化床反應器開發均相成核與結晶之新穎除磷技術," 成功大學化學工程學系學位論文, pp. 1-107, 2012
    [104] Kind, M., & Mersmann, A. (1990). On supersaturation during mass crystalliza-tion from solution. Chemical engineering & technology, 13(1), 50-62.
    [105] Nielsen, A. E., & Toft, J. M. (1984). Electrolyte crystal growth kinetics. Journal of crystal growth, 67(2), 278-288.
    [106] Myerson, A. (2002). Handbook of industrial crystallization. Butter-worth-Heinemann.
    [107] Alwan, A. K., & Williams, P. A. (1979). Mineral formation from aqueous solu-tion. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural wa-ters. Transition Metal Chemistry, 4(2), 128-132.
    [108] Sillen, L. G., Martell, A. E., & Bjerrum, J. (1964). Stability constants of met-al-ion complexes (No. 541.224). Chemical Society,.
    [109] Manzi, J., Curcio, M., & Brutti, S. (2015). Structural and morphological tuning of LiCoPO4 materials synthesized by solvo-thermal methods for Li-cell applica-tions. Nanomaterials, 5(4), 2212-2230.
    [110] Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Gerand, B., & Tarascon, J. M. (1999). Oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide. Journal of Materials chemistry, 9(4), 955-960.
    [111] Sung, S. S., Lee, D. J., & Huang, C. (2005). Steady-state humic-acid-containing blanket in upflow suspended bed. Water research, 39(5), 831-838.
    [112] Sung, S. S., Lee, D. J., & Wu, R. M. (2005). Steady-state solid-flux plot of blanket in upflow suspended bed. Journal of the Chinese Institute of Chemical Engi-neers, 36(4), 385-390.
    [113] Xia, X. H., Tu, J. P., Zhang, Y. Q., Mai, Y. J., Wang, X. L., Gu, C. D., & Zhao, X. B. (2012). Freestanding Co3O4 nanowire array for high performance supercapaci-tors. Rsc Advances, 2(5), 1835-1841.
    [114] Wang, S. L., Qian, L. Q., Xu, H., Lü, G. L., Dong, W. J., & Tang, W. H. (2009). Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. Journal of alloys and compounds, 476(1-2), 739-743.
    [115] Xing, W., Zhuo, S., Cui, H., Zhou, H., Si, W., Yuan, X., ... & Yan, Z. (2008). Morphological control in synthesis of cobalt basic carbonate nanorods assem-bly. Materials Letters, 62(8-9), 1396-1399.
    [116] Man, L., Niu, B., Xu, H., Cao, B., & Wang, J. (2011). Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Materials Research Bulletin, 46(7), 1097-1101.
    [117] Yu, R., Tao, P., Zhou, X., & Fang, Y. (2008). Hydrothermal synthesis of co-balt-basic-carbonate nanobelts. Journal of alloys and compounds, 461(1-2), 574-578.
    [118] Liu, B., Peng, J., Zhang, L., Li, W., & Zhou, L. (2010). Kinetics of non‐isothermal decomposition of basic cobalt carbonate. The Canadian Journal of Chemical Engineering, 88(5), 777-782.
    [119] Ardizzone, S., Spinolo, G., & Trasatti, S. (1995). The point of zero charge of Co3O4 prepared by thermal decomposition of basic cobalt carbonate. Electrochimica acta, 40(16), 2683-2686.
    [120] Mansour, S. A. (1994). Spectrothermal studies on the decomposition course of cobalt oxysalts Part I. Basic cobalt carbonate. Materials chemistry and phys-ics, 36(3-4), 309-316.
    [121] PACKING, I. I. S. S. M., & PROJECTILES, T. (1967). UNITED STATES PATENT OFFICE.
    [122] Hirai, M., & Yamamoto, H. (1998). Gas Evolution Behavior during Thermal Decomposition of Basic Nickel Carbonate. Journal of the Mass Spectrometry Society of Japan, 46(4), 296-298.
    [123] Bratsch, S. G. (1989). Standard electrode potentials and temperature coeffi-cients in water at 298.15 K. Journal of Physical and Chemical Reference Data, 18(1), 1-21.
    [124] Liu, Y., & Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water research, 36(7), 1653-1665.
    [125] 劉佳勳, "以化學過氧沉澱 (COP) 技術回收含硼酸廢液研究," 成功大學化學工程學系學位論文, pp. 1-121, 2013.
    [126] Jagadale, A. D., Dubal, D. P., & Lokhande, C. D. (2012). Electrochemical be-havior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Materials research bulletin, 47(3), 672-676.
    [127] Li, L., Wang, C., Liu, K., Wang, Y., Liu, K., & Lin, Y. (2015). Hexagonal co-balt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ische-mia. Analytical chemistry, 87(6), 3404-3411.
    [128] Wang, M., Ren, W., Zhao, Y., & Cui, H. (2014). Synthesis of nanostructured CoOOH film with high electrochemical performance for application in supercapaci-tor. Journal of nanoparticle research, 16(1), 2181.
    [129] Cudennec, Y., & Lecerf, A. (2001). Étude du type structural de γ-FeO(OH)(s) et comparaison avec la structure de Cu(OH)2(s). Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry, 4(12), 885-891.
    [130] Florent, M., & Bandosz, T. J. (2015). Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sul-fide. Microporous and Mesoporous Materials, 204, 8-14.
    [131] Cui, H., Zhao, Y., Ren, W., Liu, Y., & Wang, M. (2013). Aqueous foams stabi-lized solely by CoOOH nanoparticles and the resulting construction of hierarchically hollow structure. Journal of nanoparticle research, 15(8), 1851.
    [132] Matsumoto, Y., Bando, N., Hombo, J., & Sasaki, T. (1995). Analysis of hydra-tion number in cobalt oxyhydroxide films using the quartz crystal microbal-ance. Journal of Electroanalytical Chemistry, 395(1-2), 45-49.
    [133] Oaki, Y., & Imai, H. (2007). Chelation‐Mediated Aqueous Synthesis of Metal Oxyhydroxide and Oxide Nanostructures: Combination of Ligand‐Controlled Oxi-dation and Ligand‐Cooperative Morphogenesis. Chemistry–A European Jour-nal, 13(30), 8564-8571.
    [134] Gorenstein, A., Da Fonseca, C. P., & Torresi, R. M. (1991, December). Elec-trochromism in cobalt oxyhydroxide thin films. In Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X (Vol. 1536, pp. 104-115). Interna-tional Society for Optics and Photonics.
    [135] Salek, G., Alphonse, P., Dufour, P., Guillemet-Fritsch, S., & Tenailleau, C. (2014). Low-temperature carbon monoxide and propane total oxidation by nano-crystalline cobalt oxides. Applied Catalysis B: Environmental, 147, 1-7.
    [136] Zhu, L., Wu, W., Zhu, Y., Tang, W., & Wu, Y. (2015). Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for su-percapacitors. The Journal of Physical Chemistry C, 119(13), 7069-7075.
    [137] Kudielka, A., Bette, S., Dinnebier, R. E., Abeykoon, M., Pietzonka, C., & Har-brecht, B. (2017). Variability of composition and structural disorder of nanocrystal-line CoOOH materials. Journal of Materials Chemistry C, 5(11), 2899-2909.
    [138] Sexton, B. A., Hughes, A. E., & Turney, T. W. (1986). An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. Journal of catalysis, 97(2), 390-406.
    [139] Chuang, T. J., Brundle, C. R., & Rice, D. W. (1976). Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surface Sci-ence, 59(2), 413-429.
    [140] 宋易瑾, "共存陰離子對化學過氧沉澱處理含硼廢水之影響效應," 成功大學化學工程學系學位論文, pp. 1-121, 2018.
    [141] Shih, Y. J., Liu, C. H., Lan, W. C., & Huang, Y. H. (2014). A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature. Chemosphere, 111, 232-237.
    [142] Lin, J. Y., Shih, Y. J., Chen, P. Y., & Huang, Y. H. (2016). Precipitation recov-ery of boron from aqueous solution by chemical oxo-precipitation at room tempera-ture. Applied energy, 164, 1052-1058.

    無法下載圖示 校內:2025-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE