簡易檢索 / 詳目顯示

研究生: 黃惠君
Huang, Hui-Chun
論文名稱: 從組織工程到血管病理學中探討在不同微環境下適當流體剪力對於細胞反應的影響
To investigate the impact of proper shear stresses on the cell response under different cellular microenvironments : from tissue engineering to vessel pathology
指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 流體剪力上皮細胞動脈/靜脈內皮細胞
外文關鍵詞: Shear stress, epithelial cells, arterial/venous endothelial cells
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體剪力在ㄧ特定細胞的微環境中給予適當的刺激,以調節機械力傳導維持細胞功能,包括生理平衡、細胞形態學以及移動性。當不適當的流體剪力刺激時則會導致此細胞喪失功能性而促進疾病發展,例如增加流體剪力於腎上皮細胞會導致多囊性腎臟和在靜脈移植手術的靜脈內皮細胞(EC)功能受損。然而,細胞是如何感受流體剪力刺激進而影響細胞功能與機制仍尚未明了。因此假設在不同微環境下適當流體剪力對特定細胞時能促進與維持細胞功能。本研究將分為兩個目的從腎臟組織工程到血管病理學中探討對細胞反應的影響。首先:探討適當的流體剪力對腎小管上皮細胞於組織工程中角色,其結果發現腎臟上皮細胞(MDCK)的形態可藉由與膠原蛋白包覆的脂肪細胞幹細胞(ASCs)共培養增加了細胞高度,其具有柱狀形態,纖毛形成和離子轉運蛋白的功能表達。當施加低流體剪力(0.5 dyne/cm2)在以轉染GFP-微管蛋白的MDCK上,會促進表達GFP-微管蛋白中纖毛的形成,並在此微環境可防止細胞在微流體系統的長期細胞共培養中死亡。論文的第二部分闡述了動脈流體剪力(ALS,12 dyne/cm2)對動脈和靜脈EC的影響。我們發現ALS誘導動脈ECs有細長形態,其細胞型態方向性平行於流體方向。相反,靜脈內皮細胞在ALS發作後會引發脫落。在轉染GFP-黏著蛋白酶(GFP-FAK)的ECs中,ALS會增快動脈FAK dynamic,而減慢靜脈ECs的FAK dynamic。ALS也未能活化靜脈EC的Src和消退極化現象。有趣的是,上皮生長因子(EGF)可促進靜脈ECs 的FAK dynamic和極化Src來防止靜脈內皮細胞的損失和脫落。其結果表示當給予不適當的高流體剪力微環境會引發靜脈內皮細胞FAK-Src的時空差異而導致細胞丟失。因此,本篇研究發現低流體剪力有助於腎上皮細胞功能化;高流體剪力促進動脈ECs功能而引起靜脈ECs受損。表示微環境中提供適當流體剪力於不同細胞類型會促進細胞功能,而維持細胞生理機制以防止組織病理學進展具有重要意義。

    The proper shear stress in the microenvironment of a specific cell type can modulate mechanotransduction to maintain cellular functions including homeostasis, mobility, and morphology. Improper shear stress results in the disease progressions. For example, the abnormal shear stress in the renal epithelial cells leads to polycystic kidney disease and endothelial cells (EC) dysfunction in patients with vein graft surgery. Hence, we hypothesized that different intensity of shear stress influences varied responses of cell function. This study has two purposes: proper shear stress is important for kidney tubule tissue engineering and the identities and characteristics of arterial and venous EC. First, in kidney tissue regeneration, the morphology of madin-darby canine kidney (MDCK) increased cell height with columnar shapes, cilia formation and the functional expression of the ion transport protein by co-culture of adipocyte stem cells (ASCs) encapsulated with collagen gel (CG-ASCs) as compared without ASCs under static condition. Renal shear stress of 0.5 dynes/cm2 is applied to MDCK facilitated the improvement of cilia formation in the GFP-tubulin expressing MDCK and create a microenvironment to prevent cells death in long-term cell coculture from microfluidic system. The second part of the thesis illustrated the impacts of arterial laminar shear stress (ALS, dynes/cm2) on arterial and venous EC (vEC). vEC showed smaller FA size and higher FA number with prolonged FAK assembly/disassembly under ALS. ALS-induced spatial activations of FRET-Src at cellular upstream region were also disappeared in vEC. Inhibiting FAK in arterial cells abolished the ALS-induced FA dynamics and resulted to vEC phenotype for cell peel-off. Instead, rescue FA dynamics in vEC by treating epithelial growth factor activated Src and FAK to prevent the loss of vEC. In conclusion, Renal shear stress assists functionalized renal epithelial cell; arterial shear stress acts benefit effect on arterial ECs, not on vEC. The results implied the shear stress of microenvironment in different cell types has the different effect that is important for maintaining cell physiologic functions to prevent the progression of tissue pathology.

    Abstract I 中文摘要 III Chapter 1 1 1-1 Introduction 1 1-1.1 Cellular Microenvironment 1 1-1.2 The effect of fluid shear stress in the cellular microenvironment 3 The effect of shear stress on renal epithelial cells 3 The effect of shear stress on endothelial cells 6 1-1.3 Homeostasis between disease and regeneration 11 1-2 Hypothesis 13 Chapter 2 Renal shear stress in kidneys tissue engineering 14 Enhancement of Renal Epithelial Cell Functions through Microfluidic-Based Coculture with Adipose-Derived Stem Cells 14 2-1 Abstract 15 2-2 Introduction 16 2-3 Material and Methods 19 2-3.1 ASC isolation and MDCK cell culture 19 2-3.2 Coculture of MDCK and ASC 20 2-3.3 Immunofluorescence staining and 3D reconstruction 21 2-3.4 Application of fluid flow on microfluidic system 23 2-3.5 Live-cell observation for intracellular protein dynamics 24 2-3.6 Statistics 24 2-4 Results 26 2-4.1 Living cell monitoring for epithelial monolayer and gel-encapsulated 3D microenvironment 26 2-4.2 Increase of cell height and column-like epithelium by coculture system 29 2-4.3 Inducing epithelial function and cilia formation in cocultured MDCKs 32 2-4.4 Applying fluid flow to MDCKs in coculture device 34 2-5 Discussion 37 2-6 Future prospective 43 Chapter 3 Arterial shear stress in arterial and venous endothelial cells 45 Abnormal Mechanoresponses in Focal Adhesion Dynamics Induced Venous Endothelial Damage under Arterial Flow 45 3-1 Abstract 46 3-2 Interdiction 47 3-3 Material and Methods 50 3-3.1 Endothelial Cell Culture and plasmid transfection 50 3-3.2 In vitro arterial shear stress application 50 3-3.3 Analysis of cell migration and orientation 51 3-3.4 Measure spatial-temporal dynamics of FAK and Src 52 3-3.5 Immunofluorescent staining 53 3-3.6 Western blotting 54 3-3.7 Statistical analyses 55 3-4 Results 56 3-4.1 ALS triggers cell peel-off and reduces migration in vECs 56 3-4.2 Abnormal FAK assembly and disassembly in vEC 60 3-4.3 Failure of temporal-spatial Src activation subsides venous polarization 64 3-4.4 Perturbing FAK phosphorylation to reverse mechanoresponses in EC 66 3-4.5 Rescue of damaged ALS-induced venous ECs by restoring FAK dynamics 74 3-5 Discussion 77 3-6 Future prospective 82 Chapter 4 Discussion 84 Chapter 5 Summary and future prospective clinical application 87 Chapter 6 Conclusion 90 Reference 91

    Aguilar-Solis, E. D., Lee-Rivera, I., Alvarez-Arce, A., Lopez, E. and Lopez-Colome, A. M. (2017). FAK phosphorylation plays a central role in thrombin-induced RPE cell migration. Cell Signal 36, 56-66.
    Albrecht, D. R., Tsang, V. L., Sah, R. L. and Bhatia, S. N. (2005). Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111-8.
    Amin, D. N., Hida, K., Bielenberg, D. R. and Klagsbrun, M. (2006). Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 66, 2173-80.
    Ankeny, R. F., Hinds, M. T. and Nerem, R. M. (2013). Dynamic shear stress regulation of inflammatory and thrombotic pathways in baboon endothelial outgrowth cells. Tissue Eng Part A 19, 1573-82.
    Arnette, C., Frye, K. and Kaverina, I. (2016). Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking. PLoS One 11, e0148996.
    Asano, M., Fujita, Y., Ueda, Y., Suzuki, D., Miyata, T., Sakai, H. and Saito, A. (2002). Renal proximal tubular metabolism of protein-linked pentosidine, an advanced glycation end product. Nephron 91, 688-94.
    Axelsson, J. and Stenvinkel, P. (2008). Role of fat mass and adipokines in chronic kidney disease. Curr Opin Nephrol Hypertens 17, 25-31.
    Berginski, M. E., Vitriol, E. A., Hahn, K. M. and Gomez, S. M. (2011). High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6, e22025.
    Bhasin, M., Huang, Z., Pradhan-Nabzdyk, L., Malek, J. Y., LoGerfo, P. J., Contreras, M., Guthrie, P., Csizmadia, E., Andersen, N., Kocher, O. et al. (2012). Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury. PLoS One 7, e39123.
    Bhatia, S. N., Balis, U. J., Yarmush, M. L. and Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13, 1883-900.
    Bhimani, J. P., Ouseph, R. and Ward, R. A. (2010). Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2-microglobulin during clinical haemodialysis. Nephrol Dial Transplant 25, 3990-5.
    Bollache, E., Fedak, P. W. M., van Ooij, P., Rahman, O., Malaisrie, S. C., McCarthy, P. M., Carr, J. C., Powell, A., Collins, J. D., Markl, M. et al. (2017). Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. J Thorac Cardiovasc Surg.
    Boon, R. A., Leyen, T. A., Fontijn, R. D., Fledderus, J. O., Baggen, J. M., Volger, O. L., van Nieuw Amerongen, G. P. and Horrevoets, A. J. (2009). KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood.
    Boulanger, C. M. and Dignat-George, F. (2011). Microparticles: an introduction. Arterioscler Thromb Vasc Biol 31, 2-3.
    Brakeman, P., Miao, S., Cheng, J., Lee, C. Z., Roy, S., Fissell, W. H. and Ferrell, N. (2016). A modular microfluidic bioreactor with improved throughput for evaluation of polarized renal epithelial cells. Biomicrofluidics 10, 064106.
    Braren, R., Hu, H., Kim, Y. H., Beggs, H. E., Reichardt, L. F. and Wang, R. (2006). Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. J Cell Biol 172, 151-62.
    Bryant, D. M. and Mostov, K. E. (2008). From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9, 887-901.
    Cai, Z., Xin, J., Pollock, D. M. and Pollock, J. S. (2000). Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol 279, F270-4.
    Carattino, M. D., Sheng, S. and Kleyman, T. R. (2004). Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279, 4120-6.
    Carrisoza-Gaytan, R., Carattino, M. D., Kleyman, T. R. and Satlin, L. M. (2016). An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 310, C243-59.
    Chang, Y. J., Huang, H. C., Hsueh, Y. Y., Wang, S. W., Su, F. C., Chang, C. H., Tang, M. J., Li, Y. S., Wang, S. H., Shung, K. K. et al. (2016). Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Sci Rep 6, 22147.
    Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292, H1209-24.
    Chistiakov, D. A., Orekhov, A. N. and Bobryshev, Y. V. (2017). Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 219, 382-408.
    Cho, S. and Yoon, J. Y. (2017). Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 45, 34-42.
    Choi, C. K., Vicente-Manzanares, M., Zareno, J., Whitmore, L. A., Mogilner, A. and Horwitz, A. R. (2008). Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10, 1039-50.
    Chu, P. H., Tsygankov, D., Berginski, M. E., Dagliyan, O., Gomez, S. M., Elston, T. C., Karginov, A. V. and Hahn, K. M. (2014). Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms. Proc Natl Acad Sci U S A 111, 12420-5.
    Chung, S., Sudo, R., Mack, P. J., Wan, C. R., Vickerman, V. and Kamm, R. D. (2009). Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9, 269-75.
    Cines, D. B., Pollak, E. S., Buck, C. A., Loscalzo, J., Zimmerman, G. A., McEver, R. P., Pober, J. S., Wick, T. M., Konkle, B. A., Schwartz, B. S. et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527-61.
    Conway, D. E., Sakurai, Y., Weiss, D., Vega, J. D., Taylor, W. R., Jo, H., Eskin, S. G., Marcus, C. B. and McIntire, L. V. (2009). Expression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress. Cardiovasc Res 81, 669-77.
    Cui, X., Lu, Y. W., Lee, V., Kim, D., Dorsey, T., Wang, Q., Lee, Y., Vincent, P., Schwarz, J. and Dai, G. (2015). Venous Endothelial Marker COUP-TFII Regulates the Distinct Pathologic Potentials of Adult Arteries and Veins. Sci Rep 5, 16193.
    Cunningham, K. S. and Gotlieb, A. I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85, 9-23.
    Dashwood, M., Anand, R., Loesch, A. and Souza, D. (2004). Surgical trauma and vein graft failure: further evidence for a role of ET-1 in graft occlusion. J Cardiovasc Pharmacol 44 Suppl 1, S16-9.
    Davies, M. G. and Hagen, P. O. (1993). The vascular endothelium. A new horizon. Ann Surg 218, 593-609.
    Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiol Rev 75, 519-60.
    dela Paz, N. G. and D'Amore, P. A. (2009). Arterial versus venous endothelial cells. Cell Tissue Res 335, 5-16.
    Dermenoudis, S. and Missirlis, Y. (2010). Design of a novel rotating wall bioreactor for the in vitro simulation of the mechanical environment of the endothelial function. J Biomech 43, 1426-31.
    Desoize, B. (2000). Contribution of three-dimensional culture to cancer research. Crit Rev Oncol Hematol 36, 59-60.
    Dignat-George, F. and Boulanger, C. M. (2011). The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31, 27-33.
    Duan, Y., Gotoh, N., Yan, Q., Du, Z., Weinstein, A. M., Wang, T. and Weinbaum, S. (2008). Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A 105, 11418-23.
    Edmondson, R., Broglie, J. J., Adcock, A. F. and Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12, 207-18.
    Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. and Sheetz, M. P. (1999). Selective regulation of integrin--cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1, 200-6.
    Forschbach, V., Goppelt-Struebe, M., Kunzelmann, K., Schreiber, R., Piedagnel, R., Kraus, A., Eckardt, K. U. and Buchholz, B. (2015). Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation. Cell Death Dis 6, e1899.
    Gimble, J. M., Katz, A. J. and Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circ Res 100, 1249-60.
    Golledge, J. (1997). Vein grafts: haemodynamic forces on the endothelium--a review. Eur J Vasc Endovasc Surg 14, 333-43.
    Golledge, J., Turner, R. J., Harley, S. L., Springall, D. R. and Powell, J. T. (1997). Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow. J Clin Invest 99, 2719-26.
    Grabias, B. M. and Konstantopoulos, K. (2014). The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 306, F473-85.
    Gray, M. A. (2006). Primary cilia and regulation of renal Na+ transport. Focus on "Heightened epithelial Na+ channel-mediated Na+ absorption in a murine polycystic kidney disease model epithelium lacking apical monocilia". Am J Physiol Cell Physiol 290, C947-9.
    Griffith, L. G. and Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7, 211-24.
    Guo, P., Weinstein, A. M. and Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol 279, F698-712.
    Habazettl, H., Palmisano, B. W., Graf, B. M., Roerig, D. L., Bosnjak, Z. J. and Stowe, D. F. (1996). Improvement in functional recovery of the isolated guinea pig heart after hyperkalemic reperfusion with adenosine. J Thorac Cardiovasc Surg 111, 74-84.
    Hamadi, A., Bouali, M., Dontenwill, M., Stoeckel, H., Takeda, K. and Ronde, P. (2005). Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118, 4415-25.
    Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    Higashi, T. and Miller, A. L. (2017). Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol Biol Cell 28, 2023-2034.
    Himburg, H. A., Grzybowski, D. M., Hazel, A. L., LaMack, J. A., Li, X. M. and Friedman, M. H. (2004). Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286, H1916-22.
    Holtzclaw, J. D., Liu, L., Grimm, P. R. and Sansom, S. C. (2010). Shear stress-induced volume decrease in C11-MDCK cells by BK-alpha/beta4. Am J Physiol Renal Physiol 299, F507-16.
    Horton, E. R., Humphries, J. D., Stutchbury, B., Jacquemet, G., Ballestrem, C., Barry, S. T. and Humphries, M. J. (2016). Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol 212, 349-64.
    Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L. and Ho, C. M. (2003). Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J 17, 1648-57.
    Hsueh, Y. Y., Chang, Y. J., Huang, C. W., Handayani, F., Chiang, Y. L., Fan, S. C., Ho, C. J., Kuo, Y. M., Yang, S. H., Chen, Y. L. et al. (2015). Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Sci Rep 5, 14985.
    Hu, Y. L., Lu, S., Szeto, K. W., Sun, J., Wang, Y., Lasheras, J. C. and Chien, S. (2014). FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 4, 6024.
    Huang, C. W., Huang, C. C., Chen, Y. L., Fan, S. C., Hsueh, Y. Y., Ho, C. J. and Wu, C. C. (2015). Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling. Biomed Res Int 2015, 862485.
    Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. and Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science 328, 1662-8.
    Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. and Ingber, D. E. (2012). Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156-64.
    Hui, E. E. and Bhatia, S. N. (2007). Micromechanical control of cell-cell interactions. Proc Natl Acad Sci U S A 104, 5722-6.
    Humes, H. D., Buffington, D. A., MacKay, S. M., Funke, A. J. and Weitzel, W. F. (1999a). Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17, 451-5.
    Humes, H. D., MacKay, S. M., Funke, A. J. and Buffington, D. A. (1999b). Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55, 2502-14.
    Huveneers, S., Truong, H., Fassler, R., Sonnenberg, A. and Danen, E. H. (2008). Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. J Cell Sci 121, 2452-62.
    Jang, K. J., Cho, H. S., Kang, D. H., Bae, W. G., Kwon, T. H. and Suh, K. Y. (2011). Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb) 3, 134-41.
    Jang, K. J. and Suh, K. Y. (2010). A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36-42.
    Jiang, S. T., Liao, K. K., Liao, M. C. and Tang, M. J. (2000). Age effect of type I collagen on morphogenesis of Mardin-Darby canine kidney cells. Kidney Int 57, 1539-48.
    Kamaly, N., He, J. C., Ausiello, D. A. and Farokhzad, O. C. (2016). Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12, 738-753.
    Kanchanawong, P., Shtengel, G., Pasapera, A. M., Ramko, E. B., Davidson, M. W., Hess, H. F. and Waterman, C. M. (2010). Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580-4.
    Kathem, S. H., Mohieldin, A. M. and Nauli, S. M. (2014). The Roles of Primary cilia in Polycystic Kidney Disease. AIMS Mol Sci 1, 27-46.
    Khademhosseini, A. and Langer, R. (2016). A decade of progress in tissue engineering. Nat Protoc 11, 1775-81.
    Khetani, S. R. and Bhatia, S. N. (2008). Microscale culture of human liver cells for drug development. Nat Biotechnol 26, 120-6.
    Kunnen, S. J., Leonhard, W. N., Semeins, C., Hawinkels, L., Poelma, C., Ten Dijke, P., Bakker, A., Hierck, B. P. and Peters, D. J. M. (2017). Fluid shear stress-induced TGF-beta/ALK5 signaling in renal epithelial cells is modulated by MEK1/2. Cell Mol Life Sci 74, 2283-2298.
    Kunter, U., Rong, S., Boor, P., Eitner, F., Muller-Newen, G., Djuric, Z., van Roeyen, C. R., Konieczny, A., Ostendorf, T., Villa, L. et al. (2007). Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18, 1754-64.
    Le Devedec, S. E., Geverts, B., de Bont, H., Yan, K., Verbeek, F. J., Houtsmuller, A. B. and van de Water, B. (2012). The residence time of focal adhesion kinase (FAK) and paxillin at focal adhesions in renal epithelial cells is determined by adhesion size, strength and life cycle status. J Cell Sci 125, 4498-506.
    Lee, H. J., Li, N., Evans, S. M., Diaz, M. F. and Wenzel, P. L. (2013). Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 86, 92-103.
    Lee, P. T., Lin, H. H., Jiang, S. T., Lu, P. J., Chou, K. J., Fang, H. C., Chiou, Y. Y. and Tang, M. J. (2010). Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells 28, 573-84.
    Li, S., Butler, P., Wang, Y., Hu, Y., Han, D. C., Usami, S., Guan, J. L. and Chien, S. (2002). The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 99, 3546-51.
    Li, Y. S., Haga, J. H. and Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38, 1949-71.
    Lii, J., Hsu, W. J., Parsa, H., Das, A., Rouse, R. and Sia, S. K. (2008). Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal Chem 80, 3640-7.
    Liu, B., Lu, S., Hu, Y. L., Liao, X., Ouyang, M. and Wang, Y. (2014). RhoA and membrane fluidity mediates the spatially polarized Src/FAK activation in response to shear stress. Sci Rep 4, 7008.
    Liu, H., Gong, X., Jing, X., Ding, X., Yao, Y., Huang, Y. and Fan, Y. (2017). Shear stress with appropriate time-step and amplification enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med 11, 2965-2978.
    Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H. and Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25, 750-60.
    Luu, N. T., Rahman, M., Stone, P. C., Rainger, G. E. and Nash, G. B. (2010). Responses of Endothelial Cells from Different Vessels to Inflammatory Cytokines and Shear Stress: Evidence for the Pliability of Endothelial Phenotype. J Vasc Res 47, 451-461.
    Ma, M., Tian, X., Igarashi, P., Pazour, G. J. and Somlo, S. (2013). Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 45, 1004-12.
    Madariaga, M. L. and Ott, H. C. (2014). Bioengineering kidneys for transplantation. Semin Nephrol 34, 384-93.
    Maggiorani, D., Dissard, R., Belloy, M., Saulnier-Blache, J. S., Casemayou, A., Ducasse, L., Gres, S., Belliere, J., Caubet, C., Bascands, J. L. et al. (2015). Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS One 10, e0131416.
    McLean, G. W., Carragher, N. O., Avizienyte, E., Evans, J., Brunton, V. G. and Frame, M. C. (2005). The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5, 505-15.
    Mecha Disassa, N., Styp-Rekowska, B., Hinz, B., Da Silva-Azevedo, L., Pries, A. R. and Zakrzewicz, A. (2009). Differential expression of VEGFA, TIE2, and ANG2 but not ADAMTS1 in rat mesenteric microvascular arteries and veins. Physiol Res 58, 193-202.
    Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K. and Garcia, A. J. (2009). Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 20, 2508-19.
    Mills, J. N. (1951). Diurnal rhythm in urine flow. J Physiol 113, 528-36.
    Mitra, S. K., Hanson, D. A. and Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68.
    Model, L. S., Hall, M. R., Wong, D. J., Muto, A., Kondo, Y., Ziegler, K. R., Feigel, A., Quint, C., Niklason, L. and Dardik, A. (2014). Arterial shear stress reduces eph-b4 expression in adult human veins. Yale J Biol Med 87, 359-71.
    Mohammed, S. G., Arjona, F. J., Latta, F., Bindels, R. J. M., Roepman, R. and Hoenderop, J. G. J. (2017). Fluid shear stress increases transepithelial transport of Ca(2+) in ciliated distal convoluted and connecting tubule cells. FASEB J 31, 1796-1806.
    Musch, A. (2004). Microtubule organization and function in epithelial cells. Traffic 5, 1-9.
    Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J. et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33, 129-37.
    Nelson, C. M. and Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22, 287-309.
    Nerem, R. M., Alexander, R. W., Chappell, D. C., Medford, R. M., Varner, S. E. and Taylor, W. R. (1998). The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316, 169-75.
    Nieskens, T. T. and Wilmer, M. J. (2016). Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 790, 46-56.
    O'Connor, J. W. and Gomez, E. W. (2014). Biomechanics of TGFbeta-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 3, 23.
    Olivares, M. J., Gonzalez-Jamett, A. M., Guerra, M. J., Baez-Matus, X., Haro-Acuna, V., Martinez-Quiles, N. and Cardenas, A. M. (2014). Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells. PLoS One 9, e99001.
    Ong, A. C. and Wheatley, D. N. (2003). Polycystic kidney disease--the ciliary connection. Lancet 361, 774-6.
    Owens, C. D., Gasper, W. J., Rahman, A. S. and Conte, M. S. (2015). Vein graft failure. J Vasc Surg 61, 203-16.
    Papusheva, E., Mello de Queiroz, F., Dalous, J., Han, Y., Esposito, A., Jares-Erijmanxa, E. A., Jovin, T. M. and Bunt, G. (2009). Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J Cell Sci 122, 656-66.
    Parsons, J. T., Horwitz, A. R. and Schwartz, M. A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11, 633-43.
    Petzold, T., Orr, A. W., Hahn, C., Jhaveri, K. A., Parsons, J. T. and Schwartz, M. A. (2009). Focal adhesion kinase modulates activation of NF-kappaB by flow in endothelial cells. Am J Physiol Cell Physiol 297, C814-22.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-7.
    Plotnikov, S. V., Pasapera, A. M., Sabass, B. and Waterman, C. M. (2012). Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513-27.
    Raghavan, V., Rbaibi, Y., Pastor-Soler, N. M., Carattino, M. D. and Weisz, O. A. (2014). Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc Natl Acad Sci U S A 111, 8506-11.
    Raines, E. W. (2000). The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol 81, 173-82.
    Rajasekaran, A. K. and Rajasekaran, S. A. (2003). Role of Na-K-ATPase in the assembly of tight junctions. Am J Physiol Renal Physiol 285, F388-96.
    Roberts, W. G., Ung, E., Whalen, P., Cooper, B., Hulford, C., Autry, C., Richter, D., Emerson, E., Lin, J., Kath, J. et al. (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68, 1935-44.
    Rodier, F. and Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol 192, 547-56.
    Russell-Puleri, S., Dela Paz, N. G., Adams, D., Chattopadhyay, M., Cancel, L. M., Ebong, E., Orr, A. W., Frangos, J. A. and Tarbell, J. M. (2016). Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1 , PI3K , FAK, and p38. Am J Physiol Heart Circ Physiol, ajpheart 00035 2016.
    Rydholm, S., Zwartz, G., Kowalewski, J. M., Kamali-Zare, P., Frisk, T. and Brismar, H. (2010). Mechanical properties of primary cilia regulate the response to fluid flow. Am J Physiol Renal Physiol 298, F1096-102.
    Saito, A., Sawada, K. and Fujimura, S. (2011). Present status and future perspectives on the development of bioartificial kidneys for the treatment of acute and chronic renal failure patients. Hemodial Int 15, 183-92.
    Sakr, S., Rashed, L., Zarouk, W. and El-Shamy, R. (2013). Effect of mesenchymal stem cells on anti-Thy1,1 induced kidney injury in albino rats. Asian Pac J Trop Biomed 3, 174-81.
    Satir, P. and Christensen, S. T. (2008). Structure and function of mammalian cilia. Histochem Cell Biol 129, 687-93.
    Seong, J., Lu, S., Ouyang, M., Huang, H., Zhang, J., Frame, M. C. and Wang, Y. (2009). Visualization of Src activity at different compartments of the plasma membrane by FRET imaging. Chem Biol 16, 48-57.
    Sharony, R., Pintucci, G., Saunders, P. C., Grossi, E. A., Baumann, F. G., Galloway, A. C. and Mignatti, P. (2006). Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. Am J Physiol Heart Circ Physiol 290, H1651-9.
    Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R. A., Gu, H. and Guan, J. L. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol 169, 941-52.
    Shi, Z., Neoh, K. G., Kang, E. T., Poh, C. K. and Wang, W. (2014). Enhanced endothelial differentiation of adipose-derived stem cells by substrate nanotopography. J Tissue Eng Regen Med 8, 50-8.
    Shtengel, G., Galbraith, J. A., Galbraith, C. G., Lippincott-Schwartz, J., Gillette, J. M., Manley, S., Sougrat, R., Waterman, C. M., Kanchanawong, P., Davidson, M. W. et al. (2009). Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106, 3125-30.
    Siroky, B. J., Ferguson, W. B., Fuson, A. L., Xie, Y., Fintha, A., Komlosi, P., Yoder, B. K., Schwiebert, E. M., Guay-Woodford, L. M. and Bell, P. D. (2006). Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290, F1320-8.
    Sirota, J. H., Baldwin, D. S. and Villarreal, H. (1950). Diurnal variations of renal function in man. J Clin Invest 29, 187-92.
    Slack-Davis, J. K., Martin, K. H., Tilghman, R. W., Iwanicki, M., Ung, E. J., Autry, C., Luzzio, M. J., Cooper, B., Kath, J. C., Roberts, W. G. et al. (2007). Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282, 14845-52.
    Snouber, L. C., Letourneur, F., Chafey, P., Broussard, C., Monge, M., Legallais, C. and Leclerc, E. (2012). Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol Prog 28, 474-84.
    Sochol, R. D., Gupta, N. R. and Bonventre, J. V. (2016). A Role for 3D Printing in Kidney-on-a-Chip Platforms. Curr Transplant Rep 3, 82-92.
    Southerland, K. W., Frazier, S. B., Bowles, D. E., Milano, C. A. and Kontos, C. D. (2013). Gene therapy for the prevention of vein graft disease. Transl Res 161, 321-38.
    Stahmann, N., Woods, A., Carling, D. and Heller, R. (2006). Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol 26, 5933-45.
    Stutchbury, B., Atherton, P., Tsang, R., Wang, D. Y. and Ballestrem, C. (2017). Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130, 1612-1624.
    Su, H. W., Wang, S. W., Ghishan, F. K., Kiela, P. R. and Tang, M. J. (2009). Cell confluency-induced Stat3 activation regulates NHE3 expression by recruiting Sp1 and Sp3 to the proximal NHE3 promoter region during epithelial dome formation. Am J Physiol Cell Physiol 296, C13-24.
    Tabarin, T., Pageon, S. V., Bach, C. T., Lu, Y., O'Neill, G. M., Gooding, J. J. and Gaus, K. (2014). Insights into adhesion biology using single-molecule localization microscopy. Chemphyschem 15, 606-18.
    Takezawa, T. (2003). A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials 24, 2267-75.
    Traub, O. and Berk, B. C. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18, 677-85.
    Udo, K., Aoki, S., Uchihashi, K., Kawasaki, M., Matsunobu, A., Tokuda, Y., Ootani, A., Toda, S. and Uozumi, J. (2010). Adipose tissue explants and MDCK cells reciprocally regulate their morphogenesis in coculture. Kidney Int 78, 60-8.
    Vartanian, K. B., Berny, M. A., McCarty, O. J., Hanson, S. R. and Hinds, M. T. (2010). Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am J Physiol Cell Physiol 298, C333-41.
    Vedula, E. M., Alonso, J. L., Arnaout, M. A. and Charest, J. L. (2017). A microfluidic renal proximal tubule with active reabsorptive function. PLoS One 12, e0184330.
    Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., Tedgui, A., Lehoux, S. and Boulanger, C. M. (2013). Shear stress regulates endothelial microparticle release. Circ Res 112, 1323-33.
    Wang, J., Heo, J. and Hua, S. Z. (2010a). Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells. Lab Chip 10, 235-9.
    Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y. and Chien, S. (2005). Visualizing the mechanical activation of Src. Nature 434, 1040-5.
    Wang, Y. H., Yan, Z. Q., Qi, Y. X., Cheng, B. B., Wang, X. D., Zhao, D., Shen, B. R. and Jiang, Z. L. (2010b). Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 38, 729-37.
    Ward, A. O., Caputo, M., Angelini, G. D., George, S. J. and Zakkar, M. (2017). Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis 265, 266-274.
    Watson, C. Y., Damiani, F., Ram-Mohan, S., Rodrigues, S., de Moura Queiroz, P., Donaghey, T. C., Rosenblum Lichtenstein, J. H., Brain, J. D., Krishnan, R. and Molina, R. M. (2016). Screening for Chemical Toxicity Using Cryopreserved Precision Cut Lung Slices. Toxicol Sci 150, 225-33.
    Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T. and Weinstein, A. M. (2010). Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 299, F1220-36.
    Whitesides, G. M. (2011). What comes next? Lab Chip 11, 191-3.
    Wu, C. C., Chao, Y. C., Chen, C. N., Chien, S., Chen, Y. C., Chien, C. C., Chiu, J. J. and Linju Yen, B. (2008). Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech 41, 813-21.
    Wu, C. C., Li, Y. S., Haga, J. H., Kaunas, R., Chiu, J. J., Su, F. C., Usami, S. and Chien, S. (2007). Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc Natl Acad Sci U S A 104, 1254-9.
    Wu, C. C., Su, H. W., Lee, C. C., Tang, M. J. and Su, F. C. (2005). Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. Biochem Biophys Res Commun 329, 256-65.
    Wu, M. J., Wen, M. C., Chiu, Y. T., Chiou, Y. Y., Shu, K. H. and Tang, M. J. (2006). Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int 69, 2029-36.
    Wu, Y., Zhang, K., Seong, J., Fan, J., Chien, S., Wang, Y. and Lu, S. (2016). In-situ coupling between kinase activities and protein dynamics within single focal adhesions. Sci Rep 6, 29377.
    Xiong, N., Li, S., Tang, K., Bai, H., Peng, Y., Yang, H., Wu, C. and Liu, Y. (2017). Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: Roles of FAK/Src and ROCK/p-MLC pathways. Biochim Biophys Acta 1864, 12-22.
    Yau, J. W., Teoh, H. and Verma, S. (2015). Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15, 130.
    Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H. and Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327, 449-62.
    Zhou, J. (2009). Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71, 83-113.
    Zou, Y., Dietrich, H., Hu, Y., Metzler, B., Wick, G. and Xu, Q. (1998). Mouse model of venous bypass graft arteriosclerosis. Am J Pathol 153, 1301-10.
    Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-95.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211-28.
    Zwolak, R. M., Adams, M. C. and Clowes, A. W. (1987). Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg 5, 126-36.

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE