簡易檢索 / 詳目顯示

研究生: 林偉傑
Lin, Wei-Chieh
論文名稱: 嗜中性白血球的鞘磷脂路徑在急性肺損傷時扮演的角色
Role of Sphingomyelin Pathway in Neutrophils after the Development of Acute Lung Injury
指導教授: 林以行
Lin, Yee-Shin
陳昌文
Chen, Chang-Wen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 80
中文關鍵詞: 急性肺損傷鞘磷脂嗜中性球細胞凋亡
外文關鍵詞: acute lung injury, sphingomyelin, neutrophil, apoptosis
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 急性肺損傷 (acute lung injury, ALI) 和較為嚴重的急性呼吸窘迫症 (acute respiratory distress syndrome, ARDS) 為肺部劇烈的發炎反應所引起,病理上可以發現肺組織有瀰漫性肺上皮損傷,肺水腫和大量的嗜中性球 (neutrophil) 浸潤。許多證據顯示,調控嗜中性球的存活可以影響急性肺損傷病人的預後。譬如,抑制嗜中性球的凋亡和凋亡細胞的移除可以加重急性肺損傷的嚴重程度,而病人的肺泡沖洗液 (bronchoalveolar lavage fluid, BALF)中的促發炎細胞激素 (cytokines) 或趨化激素 (chemokines) 則能夠延緩嗜中性球的凋亡。這些肺泡沖洗液的發炎性物質被認為與病人的多器官衰竭有關。因此,這些發炎性物質對急性肺損傷的病人可能具有預後的價值。神經鞘脂質 (sphingolipid) 為細胞膜的組成成分,目前知道其對於細胞生長、存活和死亡亦具有調控的角色。其中神經醯胺 (ceramide) 可由神經鞘磷脂 (sphingomyelin) 經酸性或中性神經鞘磷脂酶 (acid or neutral sphingomyelinase, aSMase or nSMase) 代謝產生,具有次級訊息傳遞者的功能。一旦細胞受到了外在的刺激,例如促發炎細胞激素和內毒素(lipopolysaccharide, LPS),所產生的 ceramide 會增強發炎反應並導致細胞凋亡。Ceramide 的代謝產物 sphingosine-1-phosphate (S1P),則相反地具有抑制細胞凋亡的功能。S1P可以媒介不同激酶 (kinases) 和磷酸酶 (phosphatases) 的作用,例如 p38 mitogen-activated protein kinase (MAPK),其功能與嗜中性白血球的黏附 (adhesion)、趨化 (chemotaxis)、tumor necrosis factor-α 和 CXC 趨化激素的合成、以及細胞凋亡的調控有關。在本研究中,我們探討肺泡沖洗液中的發炎性物質是否可以成為感染所造成的急性呼吸窘迫症病人的預後因子,以及研究細胞內 sphingolipid 是否會抑制嗜中性球的凋亡而促進急性肺損傷的發生。結果發現急性呼吸窘迫症病人的肺泡沖洗液中的發炎性物質與病人病情的嚴重度和預後有關,其中以 IL-8 為預測死亡最重要的因子。然後我們研究嗜中性球在有無給予抑制劑的情況下,以內毒素抑制凋亡程度是否有所不同。我們發現內毒素抑制嗜中性球凋亡的能力會因加入 nSMase 抑制劑 sphingolactone-24 (Sph-24)、sphingosine kinase 抑制劑 sphingosine kinase inhibitor (SKI)-II、和 p38 MAPK 抑制劑 SB203580而被阻斷,但 aSMase 抑制劑則無此作用。同樣地,給予 Sph-24 和 SKI-II 也會抑制內毒素所引起的 p38 MAPK 磷酸化。接著我們進一步利用內毒素引發急性肺損傷的小鼠模式,評估給予 nSMase 抑制劑 Sph-24 對於肺損傷的嚴重程度和存活率的影響。我們發現施予 Sph-24 治療的小鼠可以降低內毒素所引起的急性肺損傷的嚴重性和增加存活率。我們同樣也觀察到急性呼吸窘迫症病人的肺泡嗜中性球 ceramide 和 phospho-p38 MAPK 的表現量比心因性肺水腫的病人來得高。總而言之,我們證明了急性呼吸窘迫症病人的肺泡沖洗液中的發炎性物質可以用來預測病人的預後;此外,活化嗜中性球的 nSMase/S1P 路徑可以使 p38 MAPK 磷酸化,導致細胞凋亡被抑制,進而促使急性肺損傷的形成。

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are characterized by overwhelming lung inflammation which reveals a diffuse damage of lung epithelium, edema formation, and the massive infiltration of neutrophils. Accumulating evidence has shown that regulation of neutrophil survival is related to the outcome in ALI patients. For example, inhibition of neutrophil apoptosis or the clearance of apoptotic neutrophils appear to be deleterious in ALI, and the proinflammatory cytokines and chemokines contained in bronchoalveolar lavage fluids (BALF) from patients with ALI prevent neutrophils from apoptosis. The inflammatory mediators in BALF have been proposed to contribute to the development of multiple organ dysfunctions in ALI patients. Therefore, determination of the inflammatory mediators in BALF might be of prognostic relevance. Sphingolipids are the components of plasma membrane and known to play essential role in cell growth, survival, and death. Ceramide, generated from sphingomyelin through acid or neutral sphingomyelinase (aSMase or nSMase), acts as a second messenger in response to various stimuli, such as proinflammatory cytokines and lipopolysaccharide (LPS), resulting in the amplification of inflammatory response and the induction of apoptosis. In contrast, its further metabolite, sphingosine-1-phosphate (S1P), has been recognized to function as a survival signal. S1P mediates the activation of various intracellular kinases and phosphatases, such as p38 mitogen-activated protein kinase (MAPK), which modulates neutrophil adhesion, chemotaxis, synthesis of tumor necrosis factor-α and CXC chemokines, and apoptosis. In this study, we explored the inflammatory mediators in BALF for prognostic relevance in patients with infection-induced ARDS and tested the hypothesis that sphingolipids would attenuate neutrophil apoptosis which contributes to the development of ALI. We found that several mediators in BALF from ARDS patients are correlated with clinical severity and outcome, in particular, IL-8 is the most significant predictor for mortality. Furthermore, LPS-stimulated human neutrophils, with or without inhibitor treatment, were analyzed for apoptosis. We found that the inhibitory effect of LPS on neutrophil apoptosis was blocked by treatment with the nSMase inhibitor sphingolactone-24 (Sph-24), sphingosine kinase inhibitor (SKI)-II, and p38 MAPK inhibitor SB203580, but not by the aSMase inhibitor chlorpromazine. LPS-activated phosphorylation of p38 MAPK was attenuated by treatment with Sph-24 and SKI-II. Moreover, mice with LPS-induced lung injury were treated with the nSMase inhibitor Sph-24 to evaluate its impact on lung injury and survival. The severity of LPS-induced ALI was reduced and the survival rate was increased in mice treated with Sph-24 compared with that in those given LPS alone. Intracellular levels of sphingolipids in alveolar neutrophils from patients with ARDS were also measured. We found that intracellular levels of ceramide and phospho-p38 MAPK were elevated in alveolar neutrophils from ARDS patients. Our results demonstrate that inflammatory mediators in BALF are predictive for the severity and outcome of patients with ARDS, and activation of the nSMase/S1P pathway to induce p38 MAPK phosphorylation results in inhibition of neutrophil apoptosis, which may contribute to the development of ALI.

    Abstract I 中文摘要 III 致謝 V Contents VII Table List X Figure List XI Abbreviations XIII Introduction 1 Foreword 1 Pathogenesis of ALI and ARDS 2 Prognostic value of inflammatory mediators in BALF in ARDS patients 3 Regulation of neutrophil apoptosis in ALI 4 An overview of sphingolipid metabolism 4 Sphingolipid signaling in regulation of cell apoptosis 5 Role of p38 MAPK in activation of neutrophils 7 Prognostic value of inflammatory mediators in BALF and role of sphingolipid signaling in neutrophils during ALI/ARDS 8 Objective and Specific Aims 9 Materials and Methods 11 Patients 11 Fiberoptic bronchoscopy sampling 12 Human protein cytokine array 13 BALF cytokine/chemokine enzyme-linked immunosorbent assay 13 Reagents and antibodies 14 Isolation of human neutrophils 14 Mice 15 LPS-induced lung injury and treatment with Sph-24 15 Assays of mouse lung injury 15 Myeloperoxidase activity 16 Apoptosis and caspase analysis 16 Sphingomyelinase assay 17 Immunostaining and flow cytometric analysis 17 Histopathology 18 Western blot analysis 18 Statistical analysis 19 Results 21 Characteristics of the study population 21 Comparison of the profiles of inflammatory mediators in BALF from ARDS patients with those from patients with cardiogenic lung edema 21 Predictive value of inflammatory mediators in BALF for the severity and mortality of patients with infection-induced ARDS 22 Sphingolipids are involved in LPS-induced inhibition of neutrophil apoptosis 23 nSMase inhibitor Sph-24 ameliorates mouse lung injury induced by LPS and improves survival 24 LPS-induced sphingolipid-mediated inhibition of neutrophil apoptosis occurs via phosphorylation of p38 MAPK 24 Increased levels of sphingolipids and phospho-p38 MAPK in alveolar neutrophils from ARDS patients 25 Discussion 27 Profile of infection-induced inflammatory mediators in BALF from ARDS patients 27 Role of inflammatory mediators in BALF in predicting the outcome of ARDS patients 28 Relationship of inflammatory mediators in BALF with clinical severity of ARDS patients 29 Effects of inflammatory mediators on regulation of neutrophil apoptosis 30 Role of neutrophil apoptosis in ALI 31 Role of sphingolipids in regulation of neutrophil apoptosis and in the development of ALI 32 Effects of S1P on regulation of immunity 35 Role of p38 MAPK in regulation of neutrophil apoptosis 35 Conclusion 38 References 40 Tables 55 Figures and Figure Legends 59 Appendix 74 Curriculum Vitae 76

    Abraham E, Carmody A, Shenkar R and Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 279:L1137-L1145 (2000).
    Aggarwal A, Baker CS, Evans TW and Haslam PL. G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J 15:895-901 (2000).
    Agouridakis P, Kyriakou D, Alexandrakis MG, Prekates A, Perisinakis K, Karkavitsas N and Bouros D. The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome. Respir Res 3:25-33 (2002).
    Akgul C, Moulding DA and Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett 487:318-322 (2001).
    Alvarado-Kristensson M, Porn-Ares MI, Grethe S, Smith D, Zheng L and Andersson T. p38 Mitogen-activated protein kinase and phosphatidylinositol 3-kinase activities have opposite effects on human neutrophil apoptosis. FASEB J 16:129-131 (2001).
    Alvarado-Kristensson M, Melander F, Leandersson K, Rönnstrand L, Wernstedt C and Andersson T. p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449-458 (2004).
    Aoshiba K, Yasui S, Hayashi M, Tamaoki J and Nagai A. Role of p38-mitogen-activated protein kinase in spontaneous apoptosis of human neutrophils. J Immunol 162:1692-1700 (1999).
    Arcaroli J, Yum HK, Kupfner J, Park JS, Yang KY and Abraham E. Role of p38 MAP kinase in the development of acute lung injury. Clin Immunol 101:211-219 (2001).
    Avdi NJ, Nick JA, Whitlock BB, Billstrom MA, Henson PM, Johnson GL and Worthen GS. Tumor necrosis factor-alpha activation of the c-Jun N-terminal kinase pathway in human neutrophils. Integrin involvement in a pathway leading from cytoplasmic tyrosine kinases apoptosis. J Biol Chem 276: 2189-2199 (2001).
    Awad AS, Ye H, Huang L, Li L, Foss FW Jr, Macdonald TL, Lynch KR and Okusa MD. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290: F1516-1524 (2006).
    Baudhuin LM, Cristina KL, Lu J and Xu Y. Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specific. Mol Pharmacol 62: 660-671 (2002).
    Baughman RP, Gunther KL, Rashkin MC, Keeton DA and Pattishall EN. Changes in the inflammatory response of the lung during acute respiratory distress syndrome: Prognostic indicators. Am J Respir Crit Care Med 154:76-81 (1996).
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A and Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818-824 (1994).
    Blom T, Bergelin N, Meinander A, Löf C, Slotte JP, Eriksson JE and Törnquist K. An autocrine sphingosine-1-phosphate signaling loop enhances NF-kappaB-activation and survival. BMC Cell Biol 11:45 (2010).
    Bouros D, Alexandrakis MG, Antoniou KM, Agouridakis P, Pneumatikos I, Anevlavis S, Pataka A, Patlakas G, Karkavitsas N and Kyriakou D. The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for acute respiratory distress syndrome. BMC Pulm Med 4:6-14 (2004).
    The ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301-1308 (2000).
    Carter AB, Knudtson KL, Monick MM and Hunninghake GW. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 274: 30858-30863 (1999).
    Chen CL, Lin CF, Chang WT, Huang WC, Teng CF and Lin YS. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111:4365-4374 (2008).
    Chihab R, Porn-Ares MI, Alvarado-Kristensson M and Andersson T. Sphingosine 1-phosphate antagonizes human neutrophil apoptosis via p38 mitogen-activated protein kinase. Cell Mol Life Sci 60:776-785 (2003).
    Chopra M, Reuben JS and Sharma AC. Acute lung injury: apoptosis and signaling mechanisms. Exp Biol Med (Maywood) 234:361-371 (2009).
    Colotta F, Re F, Polentarutti N, Sozzani S and Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80: 2012–2020 (1992).
    Cogolludo A, Moreno L, Frazziano G, Moral-Sanz J, Menendez C, Castaneda J, Gonzalez C, Villamor E and Perez-Vizcaino F. Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovasc Res 82:296-302 (2009).
    Dayon A, Brizuela L, Martin C, Mazerolles C, Pirot N, Doumerc N, Nogueira L, Goizio M, Teissie J, Serre G, Rischmann P, Malavaud B and Cuvillier O. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival. Plos One 4: e8048 (2009).
    Delgado A, Casas J, Llebaria A, Abad JL, and Fabrias G. Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957-1977 (2006).
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL and Campai ISS. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296-327 (2008).
    Detmers PA, Zhou D, Polizzi E, Thieringer R, Hanlon WA, Vaidya S and Bansal V. Role of stress-activated mitogen-activated protein kinase (p38) in beta 2-integrin-dependent neutrophil adhesion and the adhesion-dependent oxidative burst. J Immunol 161: 1921-1929 (1998).
    Diab KJ, Adamowicz JJ, Kamocki K, Rush NI, Garrison J, Gu Y, Schweitzer KS, Skobeleva A, Rajashekhar G, Hubbard WC, Berdyshev EV and Petrache I. Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema. Am J Respir Crit Care Med 181:344-352 (2010).
    Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, Grant IS, Pollok AJ and Haslett C. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643-647 (1993).
    Donnelly SC, Strieter RM, Reid PT, Kunkel SL, Burdick MD, Armstrong I, Mackenzie A and Haslett C. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome. Ann Intern Med 125:191-196 (1996).
    Dunican AL, Leuenroth SJ, Grutkoski P, Ayala A and Simms HH. TNF-α induced suppression of PMN apoptosis is mediated through IL-8 production. Shock 14:284-289 (2000).
    Fligiel SE, Standiford T, Fligiel HM, Tashkin D, Strieter RM, Warner RL, Johnson KJ and Varani J. Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol 37:422-430 (2006).
    Folkesson HG, Matthay MA, Hebert CA and Broaddus VC. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest 96:107-116 (1995).
    Fotouhi-Ardakani N, Kebir DE, Pierre-Charles N, Wang L, Ahern SP, Filep JG and Milot E. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. Am J Respir Crit Care Med 182:341-350 (2010).
    Fox S, Leitch AE, Duffin R, Haslett C and Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2:216-227 (2010).
    French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK and Smith CD. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962-5969 (2003).
    Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR and English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108: 689-701 (2001).
    Gardner AM and Johnson GL. Fibroblast growth factor-2 suppression of tumor necrosis factor alpha-mediated apoptosis requires Ras and the activation of mitogen-activated protein kinase. J Biol Chem 271: 14560-14566 (1996).
    Gilroy DW, Lawrence T, Perretti M and Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3:401-416 (2004).
    Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze S, Gulbins E and Uhlig S. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10:155-160 (2004).
    Goldkorn T and Filosto S. Lung injury and cancer: Mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am J Respir Cell Mol Biol 43:259-268 (2010).
    Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD and Martin TR. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154:602-611 (1996).
    Grutkoski PS, Graeber CT, Ayala A and Simms HH. Paracrine suppression of apoptosis by cytokine-stimulated neutrophils involves divergent regulation of NF-kappaB, Bcl-X(L), and Bak. Shock 17:47-54 (2002).
    Han J, Lee JD, Bibbs L and Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808-811 (1994).
    Hannun YA and Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139-150 (2008).
    Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5-11 (1999).
    Headley AS, Tolley E and Meduri GU. Infections and the inflammatory response in acute respiratory distress syndrome. Chest 111:1306–21 (1997).
    Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q and Deng P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 171:850-857 (2005).
    Jung ID, Lee JS, Kim YJ, Jeong YI, Lee CM, Lee MG, Ahn SC and Park YM. Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase. Immunology 121:533-544 (2007).
    Keel M, Ungethum U, Steckholzer U, Niederer E, Hartung T, Trentz O and Ertel W. Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90:3356-3363 (1997).
    Kelley J. Cytokines of the lung. Am Rev Respir Dis 141:765–88 (1990).
    Kettritz R, Gaido ML, Haller H, Luft FC, Jennette CJ and Falk RJ. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human neutrophils. Kidney Int 53:84-91(1998).
    Kiehl MG, Ostermann H, Thomas M, Muller C, Cassens U and Kienast J. Inflammatory mediators in bronchoalveolar lavage fluid and plasma in leukocytopenic patients with septic shock-induced acute respiratory distress syndrome. Crit Care Med 26:1194-1199 (1998).
    Klein JB, Rane MJ, Scherzer JA, Coxon PY, Kettritz R, Mathiesen JM, Buridi A and McLeish KR. Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. J Immunol 164: 4286-4291 (2000).
    Knaus WA, Draper EA, Wagner DP and Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 13:818-829 (1985).
    Lahiri S and Futerman AH. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 64:2270-2284 (2007).
    Lanchou J, Corbel M, Tanguy M, Germain N, Boichot E, Theret N, Clement B, Lagente V and Malledant Y. Imbalance between matrix metalloproteinases (MMP-9 and MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in acute respiratory distress syndrome patients. Critical Care Medicine 31:536-542 (2003).
    Lee C, Xu DZ, Feketeova E, Kannan KB, Yun JK, Deitch EA, Fekete Z, Livingston DH and Hauser CJ. Attenuation of shock-induced acute lung injury by sphingosine kinase inhibition. J Trauma 57:955-960 (2004).
    Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW and et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746 (1994).
    Lesur O, Kokis A, Hermans C, Fulop T, Bernard A and Lane D. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. Crit Care Med 28:3814-3822 (2000).
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL and Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250-1256 (2003).
    Lin CF, Chen CL and Lin YS. Ceramide in apoptotic signaling and anticancer therapy. Curr Med Chem 13:1609-1616 (2006).
    Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH, Jr., Milstien S and Spiegel S. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280:37118-37129 (2005).
    Manthey CL, Wang SW, Kinney SD and Yao, Z. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol 64: 409-417 (1998).
    Marini JJ. Advances in the understanding of acute respiratory distress syndrome: summarizing a decade of progress. Curr Opin Crit Care 10:265-271 (2004).
    Mathias S, Pena LA and Kolesnick RN. Signal transduction of stress via ceramide. Biochem J 335:465-480 (1998).
    Matsuda T, Saito H, Fukatsu K, Han I, Inoue T, Furukawa S, Ikeda S and Hidemura A. Cytokine-modulated inhibition of neutrophil apoptosis at local site augments exudative neutrophil functions and reflects inflammatory response after surgery. Surgery 129:76-85 (2001).
    Matute-Bello G, Liles WC, Radella F, 2nd, Steinberg KP, Ruzinski JT, Hudson LD and Martin TR. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med 28:1-7 (2000).
    Matute-Bello G and Martin TR. Science review: apoptosis in acute lung injury. Crit Care 7:355-358 (2003).
    McNamee JP, Bellier PV, Kutzner BC and Wilkins RC. Effect of pro-inflammatory cytokines on spontaneous apoptosis in leukocyte sub-sets within a whole blood culture. Cytokine 31:161-167 (2005).
    McVerry BJ and Garcia JGN. In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17:131-139 (2005).
    Meduri GU, Kohler G, Headley S, Tolley E, Stentz F and Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108:1303-1314 (1995).
    Meduri GU, Kanangat S, Stefan J, Tolley E and Schaberg D. Cytokines IL-1, IL-6, and TNF- enhance in vitro growth of bacteria. Am J Respir Crit Care Med 1999;160:961-967 (1999).
    Minamitani C, Otsuka T, Takai S, Matsushima-Nishiwaki R, Adachi S, Hanai Y, Mizutani J, Tokuda H and Kozawa O. Involvement of Rho-kinase in sphingosine 1-phosphate-stimulated HSP27 induction in osteoblasts. Int J Mol Med 24:77-82 (2009).
    Moriue T, Igarashi J, Yoneda K, Nakai K, Kosaka H and Kubota Y. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. Biochem Biophys Res Commun 368:852-857 (2008).
    Murray JF, Matthay MA, Luce JM and Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720-723 (1988).
    Nahas N, Molski TF, Fernandez GA and Sha'afi RI. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J 318 ( Pt 1):247-253 (1996).
    Nebreda AR and Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25:257–260 (2000).
    Ng KW, Ridgway P, Cohen DR and Tremethick DJ. The binding of a Fos/Jun heterodimer can completely disrupt the structure of a nucleosome. EMBO J 16:2072-2085 (1997).
    Nick JA, Avdi NJ, Young SK, Knall C, Gerwins P, Johnson GL and Worthen GS. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest 99: 975-986 (1997).
    Nick JA, Young SK, Arndt PG, Lieber JG, Suratt BT, Poch KR, Avdi NJ, Malcolm KC, Taube C, Henson PM and Worthen GS. Selective suppression of neutrophil accumulation in ongoing pulmonary inflammation by systemic inhibition of p38 mitogen-activated protein kinase. J Immunol 169:5260-5269 (2002).
    Nishiuma T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Jahangeer S and Nakamura S. Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 294:L1085-1093 (2008).
    Ocaña MG, Asensi V, Montes AH, Meana A, Celada A and Valle-Garay E. Autoregulation mechanism of human neutrophil apoptosis during bacterial infection. Mol Immunol 45:2087-2096 (2008).
    Ottonello L, Frumento G, Arduino N, Bertolotto M, Dapino P, Mancini M and Dallegri F. Differential regulation of spontaneous and immune complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3. J Leukoc Biol 72:125-132 (2002).
    Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F, 2nd, Park DR, Pugin J, Skerrett SJ, Hudson LD and Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 164:1896-1903 (2001).
    Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, Wheeler AP and Net NARDSCT. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 33:1–6 (2005).
    Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM and Garcia JG. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 169:1245-1251 (2004).
    Pyne S and Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385-402 (2000).
    Ren S, Xin C, Pfeilschifter J, and Huwiler A. A novel mode of action of the putative sphingosine kinase inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell Physiol Biochem 26:97-104 (2010).
    Rollins BJ. Chemokines. Blood 90:909-928 (1997).
    Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T and Nebreda AR. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027-1037 (1994).
    Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN, Dower SK and Whyte MK. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 170: 5268-5275 (2003).
    Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q and Luster AD. The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol 162:3549-3558 (1999).
    Schutte H, Lohmeyer J, Rosseau S, Ziegler S, Siebert C, Kielisch H, Pralle H, Grimminger F, Morr H and Seeger W. Bronchoalveolar and systemic cytokine profiles in patients with ARDS, severe pneumonia and cardiogenic pulmonary oedema. Eur Respir J 9:1858-1867 (1996).
    Sensken SC, Bode C and Graler MH. Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J Pharmacol Exp Ther 328:963-969 (2009).
    Sevransky JE, Martin GS, Mendez-Tellez P, Shanholtz C, Brower R, Pronovost PJ and Needham DM. Pulmonary vs nonpulmonary sepsis and mortality in acute lung injury. Chest 134:534-538 (2008).
    Shelhamer JH, Levine SJ, Wu T, Jacoby DB, Kaliner MA and Rennard SI. NIH conference. Airway inflammation. Ann Intern Med 123:288-304 (1995).
    Slutsky AS and Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725 (1998).
    Spiegel S and Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397-407 (2003).
    Sookhai S, Wang JJ, McCourt M, Kirwan W, Bouchier-Hayes D and Redmond P. A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo. Ann Surg 235: 285-291 (2002).
    Standiford TJ, Kunkel SL, Phan SH, Rollins BJ and Strieter RM. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266:9912-9918 (1991).
    Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT, and Ancukiewicz M. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 354:1671-1684 (2006).
    Strub GM, Maceyka M, Hait NC, Milstien S and Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141-155 (2010).
    Taneja R, Parodo J, Jia SH, Kapus A, Rotstein OD and Marshall JC. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Crit Care Med 32:1460-1469 (2004).
    Tang NL, Chan PK, Wong CK, To KF, Wu AK, Sung YM, Hui DS, Sung JJ and Lam CW. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 51:2333-2340 (2005).
    Uhlig S and Gulbins E. Sphingolipids in the lungs. Am J Respir Crit Care Med 178:1100-1114 (2008).
    Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DW and Griswold DE. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 279: L895-902 (2000).
    Verdurmen WP, Thanos M, Ruttekolk IR, Gulbins E, and Brock R. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake. J Control Release 147:171-179 (2010).
    Villunger A, O'Reilly LA, Holler N, Adams J and Strasser A. Fas ligand, Bcl-2, granulocyte colony-stimulating factor, and p38 mitogen-activated protein kinase: Regulators of distinct cell death and survival pathways in granulocytes. J Exp Med 192:647-658 (2000).
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM and Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707-710 (1996).
    von Bismarck P, Wistadt CFG, Klemm K, Winoto-Morbach S, Uhlig U, Schutze S, Adam D, Lachmann B, Uhlig S and Krause MF. Improved pulmonary function by acid sphingomyelinase inhibition in a newborn piglet lavage model. Am J Respir Crit Care Med 177:1233-1241 (2008).
    Wang CY, Mayo MW, Korneluk RG, Goeddel DV and Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680-1683 (1998).
    Ware LB and Matthay MA. The acute respiratory distress syndrome. N Engl J Med 342:1334-1349 (2000).
    Wheeler AP and Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553-1564 (2007).
    Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS and Sung JJ. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 136:95-103 (2004).
    Xia P, Wang L, Gamble JR and Vadas MA. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem 274:34499-34505 (1999).
    Yang DI, Yeh CH, Chen S, Xu J and Hsu CY. Neutral sphingomyelinase activation in endothelial and glial cell death induced by amyloid beta-peptide. Neurobiol Dis 17:99-107 (2004).
    Zambon M and Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 133:1120-1127 (2008).
    Zemans RL, Colgan SP and Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40:519-535 (2009).
    Zu YL, Qi J, Gilchrist A, Fernandez GA, Vazquez-Abad D, Kreutzer DL, Huang CK and Sha'afi RI. p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-alpha or FMLP stimulation. J Immunol 160: 1982-1989 (1998).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE