簡易檢索 / 詳目顯示

研究生: 黃佩琪
Huang, Pei-chi
論文名稱: 以拉普拉斯為基礎的3D模型一致化研究
Inter-surface Fitting Using Laplacian-based Template
指導教授: 李同益
Lee, Tong-yee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 網格逼近一致性模型表面重構
外文關鍵詞: fitting, compatible mesh, surface reconstruction
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用三維掃瞄器可以取得現實中物件的幾何資訊,且三維掃瞄器的輸出為點資料集合。爲點資料集合重構出其表面是三維電腦圖學中一項重要的研究領域。本篇論文提出了一個簡單的方法去重構出點模型的表面。我們使用以拉普拉斯為基礎的樣板網格,利用疊代的方式,建構出點資料集合的表面,且可以應用重新取樣的方式提高重構表面的品質。

    大部分幾何處理的應用,都需要兩個或是多個模型的一對一對應關係。這些對應關係建立出來後,必需要能夠表現出原模型的特徵及形狀。且模型間的各部位必須要能夠有好的對應,例如腳對到腳,眼睛對到眼睛。大部分的應用也需要這些模型能夠以一致性模型的方式表現。利用對應關係,可以在模型間做形變,形狀混合之類的應用。本篇論文提出了一個架構,不僅可以重構點集合資料的表面,亦可以將其延伸至建立一致性的模型。為各模型間建立出一致性模型後,即可以做幾何處理的應用。

    Today geometry of objects in real world can be obtained easily by scanning devices, and the output is always point data sets. The reconstruction of surface mesh from these point data sets is a vital and fundamental research in computer graphics. In this thesis, we propose a novel fitting method to reconstruct surface from given point models. To our algorithm, the input includes: 1) a selected laplacian-based template and 2) point data sets. The mesh surface of point models can be reconstructed by this novel fitting process, and high-quality surface can be acquired by further resampling.

    In digital geometry processing, many applications such as morphing, deformation and texture transfer etc. require a bijective mapping between two or among more models. This mapping needs to express features and shape of original models, e.g. mapping legs to legs, eyes to eyes, and so on. Most of the applications require the models to be represented by compatible meshes. In this thesis, we also provide a novel framework for this cross-surface bijective mapping. Our framework is very flexible enough to handle meshes as well as point data sets. In contrast to previous works, this novel approach generates better reconstruction quality for cross-parameterized mesh surface.

    中文摘要 iii 英文摘要 iv 誌謝 vi 目錄 vii 圖目錄 ix 表目錄 xiii 第一章 導論 1 1.1 研究動機 1 1.2 研究內容與流程 3 1.3 主要研究貢獻 4 第二章 相關研究 6 2.1 三維網格間的對應關係 6 2.2 利用三維網格逼近(fit)點取樣表面 11 2.3 網格最佳化 14 第三章 主要架構及演算法 18 3.1 系統架構流程 18 3.2 自動化特徵點對應 20 3.2.1 自動化偵測特徵點 20 3.2.2 將特徵點叢集化 22 3.2.3 建立網格與點取樣表面間之特徵點對應關係 26 3.2.3.1 設定手動特徵點的harmonic座標值 26 3.2.3.2 計算自動偵測特徵點之harmonic座標值 28 3.2.3.3 利用特徵點之harmonic座標值自動建立特徵點對應關係 30 3.3 網格逼近目標模型 31 3.3.1 建構初始網格 31 3.3.2 轉換問題到對偶圖(dual graph)領域(domain) 36 3.3.3 決定限制點位置 39 3.3.4 網格三角形形狀最佳化 44 3.3.5 重構逼近模型的網格 47 3.4 建立一致性模型 54 3.4.1 將模型資訊嵌入網格建立一致性模型 54 3.4.2 利用重新取樣提高網格品質 55 第四章 實驗結果與討論 62 4.1 實驗結果 62 4.1.1 網格與目標網格形狀類似的結果 62 4.1.2 網格與目標模型形狀差異較大的結果 67 4.1.3 應用球體網格逼近目標模型的結果 69 4.1.4 genus大於零的結果 70 4.1.5 目標模型有破洞的結果 73 4.2 結果數據測量表 77 4.3 形變過程圖 79 4.4 討論 81 第五章 結論與未來展望 83 參考文獻 84

    [1] A. GREGORY, A. STATE, M. LIN, D. MANOCHA, M. LIVINGSTON.
    Feature-based Surface Decomposition for Polyhedral Morphing.
    Tech. Rep. TR98-014, Department of Computer Science, University of North Carolina - Chapel Hill, Apr. 14, 1998.

    [2] A. LEE, D. DOBKIN, W. SWELDENS, P. SCHRÖDER.
    Multiresolution mesh morphing.
    ACM SIGGRAPH 1999.

    [3] A. Nealen, T. Igarashi, O. Sorkine, M. Alexa.
    Laplacian Mesh Optimization.
    ACM GRAPHITE 2006.

    [4] Cheng Kin-Shing D., Wang Wenping, Qin Hong, Wong Kwan-Yee K., Yang Huaiping, Liu Yang.
    Fitting Subdivision Surfaces to Unorganized Point Data Using SDM.
    Pacific Conference on Computer Graphics and Applications 2004.

    [5] C. Stoll, Z. Karni, C. Rössl, H. Yamauchi, H.-P. Seide
    Template Deformation for Point Cloud Fitting.
    Eurographics Symposium on Point-Based Graphics 2006.

    [6] E. PRAUN, W. SWELDENS, P. SCHRÖDER.
    Consistent mesh parameterizations.
    ACM SIGGRAPH 2001.

    [7] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle.
    Mesh optimization.
    ACM SIGGRAPH 1993.

    [8] H. Suzuki, S. Takeuchi, T. Kanai.
    Subdivision Surface Fitting to a Range of Points.
    The Seventh Pacific Conference on Computer Graphics and Applications 1999.

    [9] J. R. KENT, W. E. CARLSON, R. E. PARENT.
    Shape transformation for polyhedral objects.
    ACM SIGGRAPH 1992.

    [10] J. SCHREINER, A. PRAKASH, E. PRAUN, H. HOPPE.
    Inter-Surface Mapping.
    ACM Transactions on Graphics 2004.

    [11] J. Klein, G. Zachmann.
    Point Cloud Surfaces using Geometric Proximity Graphs
    Computers and Graphics, Vol. 28, No. 6, Elsevier, pages 839-850, December, 2004

    [12] Z. Lei, L. Ligang, J. Zhongping, W. Guojin
    Monifold Parameterization
    Computer Graphics International Conference, June 2006

    [13] M. ALEXA.
    Merging Polyhedral Shapes with Scattered Features.
    The Visual Computer 16, 2000.

    [14] M. Pauly, M. Gross, L. P. Kobbelt.
    Efficient Simplification of Point-Sampled Surfaces.
    IEEE Visialization 2002.

    [15] M.S. Floater
    Mean value coordinates.
    Computer Aided Geometric Design 20, 1 (Mar.), 19 – 27 2003.

    [16] M. PAULY, N. J. MITRA, J. GIESEN, M. GROSS, L. GUIBAS.
    Example-based 3d scan completion.
    Symposium on Geometry Processing 2005.

    [17] O. Sorkine and D. Cohen-Or.
    Least-squares Meshes..
    Shape Modeling International 2004.

    [18] O. Sorkine, D. Cohen-Or, D. Irony, S. Toledo.
    Geometry-Aware Bases for Shape Approximation.
    IEEE Transactions on Visualization and Computer Graphics, March/April 2005.

    [19] R. Zayer, C. Rössl, Z. Karni, H.-P. Seide
    Harmonic Guidance for Surface Deformation
    EUROGRAPHICS 2005

    [20] T. KANAI, K. SUZUKI, F. KIMURA.
    Metamorphosis of arbitrary triangular meshes.
    IEEE Computer Graphics and Applications,20(2), 2000.

    [21] T. MICHIKAWA, T. KANAI, M. FUJITA, H. CHIYOKURA.
    Multiresolution Interpolation Meshes.
    Proc. 9th Pacific Graphics International Conference, IEEE CS Press 2001.

    [22] V. KRAEVOY, A. SHEFFER.
    Cross-parameterization and compatible remeshing of 3D models.
    ACM SIGGRAPH 2004.

    下載圖示
    2010-08-28公開
    QR CODE