| 研究生: |
葉雨柔 Ye, Yu-Rou |
|---|---|
| 論文名稱: |
防禦型資產配置策略於全球、美國及台灣ETF市場多元化投資績效之分析 Performance Analysis of Diversified Investments Using a Defensive Asset Allocation (DAA) Strategy Across Global, U.S., and Taiwan ETF Markets |
| 指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 防禦型資產配置 、動能投資 、定期定額 、交易成本 、全球市場 |
| 外文關鍵詞: | Defensive Asset Allocation, Momentum Investment, Dollar-Cost Averaging, Transaction Costs, Global Market |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討防禦型資產配置策略(Defensive Asset Allocation, DAA)於多元市場情境下之實務可行性與穩健性表現。藉由動能因子與風險濾網結合,設計三種策略版本(Base、T2、G4),並與傳統均權重配置(Equal Weight, EW)及全球市場代表性「Vanguard全世界股票ETF(VT)」進行績效比較,透過歷史回測方式評估策略在不同操作條件下之報酬性與風險控制能力。
實證內容涵蓋三大情境:不考慮交易成本、納入平均交易成本後,以及定期定額投資模式。研究期間橫跨2010年至2025年,涵蓋疫情、升息循環等多次重大金融事件,以提高樣本期間之代表性與策略穩健性檢驗力度。回測指標涵蓋年化報酬率、年化波動率、夏普值、最大回撤與卡瑪比率等五項核心指標,並進行多維度交叉比較。
實證結果顯示,DAA策略於大多數情境下在報酬表現方面不如VT與EW,特別是在納入交易成本後,T2與G4版本因再平衡頻率高、成本敏感性強,導致績效明顯下滑;且在極端市場下,其最大回撤亦未優於傳統策略,顯示防禦性表現仍有提升空間。然而,Base版本於波動控制方面表現穩健,整體風險輪廓平衡,為三版本中表現最穩定者。
在定期定額情境中,DAA三版本累積市值普遍低於VT與EW,但報酬波動幅度較小(G4除外),能提供長期投資者另一種風險控制導向的選擇。整體而言,DAA策略雖未於所有面向優於傳統配置模式,但其策略架構於風險抑制與資產配置彈性上具備潛力。未來可進一步優化參數設計、擴充資產池,並導入動態再平衡機制,以提升策略之應用價值與調適能力。
This study evaluates the feasibility and robustness of the Defensive Asset Allocation (DAA) strategy under diverse market conditions. By incorporating momentum signals and risk filters, three versions of the DAA model—Base, T2, and G4—are constructed and benchmarked against traditional strategies, including Equal Weight (EW) and the global ETF proxy (VT). Historical backtesting is conducted to evaluate the performance and risk management of the strategy under various implementation frameworks.
The empirical design covers three scenarios: excluding transaction costs, incorporating average transaction costs, and applying a dollar-cost averaging (DCA) investment approach. The sample period spans from 2011 to 2025, encompassing major market events such as the COVID-19 pandemic and the global interest rate hike cycle. Performance is evaluated using annualized return, annualized volatility, Sharpe ratio, maximum drawdown, and return-to-drawdown ratio.
Results show that DAA strategies generally underperform EW and VT in terms of overall return, especially after accounting for transaction costs. The T2 and G4 versions are particularly affected due to their higher rebalancing frequency. Additionally, the maximum drawdowns of DAA strategies are not consistently better than those of traditional approaches, suggesting room for improvement in managing downside risk. Nonetheless, the Base version exhibits relatively stable volatility and balanced risk characteristics across scenarios, indicating potential suitability for risk-averse investors.
Under the DCA framework, all DAA models show lower portfolio volatility but accumulate less wealth than EW and VT over the long term. Overall, while DAA strategies do not outperform traditional methods across all dimensions, they offer structural flexibility and moderate control over volatility. Future research may focus on dynamic parameter optimization, expanding the asset universe, and implementing condition-based rebalancing mechanisms to enhance the DAA model’s practical adaptability in evolving market environments.
朱柏樺(2016)。應用EAA模型於中國大陸、香港與台灣證券市場,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/8zx33f
林佳儒(2024)。應用大膽資產配置 ( BAA ) 策略於中國、香港及台灣金融市場,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/8dfgsa
林鈺晉(2024)。美國及台灣市場之動態資產配置策略,國立臺灣大學財務金融研究所碩士論文。https://hdl.handle.net/11296/84w9zx
邱毅翔(2013)。動態資產配置策略與績效之分析,逢甲大學金融碩士在職專班碩士論文。https://hdl.handle.net/11296/v279fk
翁靖雅(2021)。再平衡資產配置策略之實證研究,國立清華大學財務金融碩士在職專班碩士論文。https://hdl.handle.net/11296/zx8pv
黃信勝(2017)。探討防禦型資產配置模型應用於美國股票指數基金的績效,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/wn32xq
簡祥軒(2025)。防禦型資產配置策略於新興市場之應用與實證研究,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/878xf6
簡溢伶(2024)。ETF投資組合之多元資產配置與權重最適化探討,國立政治大學國際金融碩士學位學程碩士論文。https://hdl.handle.net/11296/y6548k
Asness, C. S., Frazzini, A., & Pedersen, L. H. (2013). Quality minus junk. AQR Capital Management Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2312432
Arnott, R. D., Sherrerd, K. F., & Wu, L. J. (2013). The Glidepath Illusion...And Potential Solutions. Journal of Retirement, 1(2), 13–28. https://ssrn.com/abstract=2326774
Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross‐section of expected returns. Journal of Financial Economics,99(2),427–446。https://doi.org/10.1016/j.jfineco.2010.08.014
Barroso, P., & Santa-Clara, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111–120. https://doi.org/10.1016/j.jfineco.2014.11.010
Bellu, M., & Conversano, C. (2020). Protected adaptive asset allocation, Finance Research Letters, 32, 101095. https://doi.org/10.1016/j.frl.2019.01.007.
Chan, L. K. C., Jegadeesh, N., & Lakonishok, J. (1996). Momentum strategies. The Journal of Finance, 51(5), 1681–1713. https://doi.org/10.1111/j.1540-6261.1996.tb05222.x
Carlson, T.(2025a). Tactical allocation for vanguard investors: A defensive strategy for retirement portfolios. https://dx.doi.org/10.2139/ssrn.5369659
Carlson, T.(2025b). Defense first: A multi-asset tactical model for adaptive downside protection. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5334772
Chaves, D. B.(2012)Eureka! A momentum strategy that also works in Japan.https://dx.doi.org/10.2139/ssrn.1982100
DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953. https://doi.org/10.1093/rfs/hhm075
Dichtl, H., Drobetz, W., & Wambach, M. (2014). Testing rebalancing strategies for stock-bond portfolios across different asset allocations. https://dx.doi.org/10.2139/ssrn.2479384
Flint, E., Chikurunhe, F., & van Schaik, L. (2025). Hedging on a global scale: managing currency and asset risk jointly. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5284212
Geczy, C., & Samonov, M.(2017)Two centuries of multi-asset momentum (equities, bonds, currencies, commodities, sectors and stocks) https://dx.doi.org/10.2139/ssrn.2607730
Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance,48(1),65–91.https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
Keller, W., & Putten H. v. (2012). Generalized momentum and flexible asset allocation (FAA): A Heuristic Approach. https://dx.doi.org/10.2139/ssrn.2193735
Keller, W. J., & Butler A. (2014). A Century of Generalized Momentum; From flexible asset allocations to elastic asset allocation (EAA). https://dx.doi.org/10.2139/ssrn.2543979
Keller, W. J., Butler A., Kipnis I. (2015). Momentum and Markowitz: A golden combination. https://dx.doi.org/10.2139/ssrn.2606884
Keller, W. J., & Keuning, J. W. (2016). Protective asset allocation (PAA).https://dx.doi.org/10.2139/ssrn.2759734
Keller, W. J., & Keuning, J. W. (2017). Vigilant asset allocation (VAA).https://dx.doi.org/10.2139/ssrn.3002624
Keller, W. J., & Keuning, J. W. (2018). Breadth momentum and the canary universe: Defensive asset allocation (DAA). https://dx.doi.org/10.2139/ssrn.3212862
Keller, W. J. (2019). Lethargic asset allocation (LAA). https://dx.doi.org/10.2139/ssrn.3498092
Keller, W. J. (2020). Resilient asset allocation (RAA). https://dx.doi.org/10.2139/ssrn.3752294
Keller, W. J. (2022). Relative and absolute momentum in times of rising/low yields: Bold Asset Allocation (BAA). https://dx.doi.org/10.2139/ssrn.4166845
Keller, W. J., & Keuning, J. W. (2023). Dual and canary momentum with rising yields/inflation: Hybrid asset allocation (HAA). https://dx.doi.org/10.2139/ssrn.4346906
Ilmanen, A. (2011). Expected returns: An investor's guide to harvesting market rewards. Wiley Finance. https://www.wiley.com/en-us/Expected+Returns%3A+An+Investor%27s+Guide+to+Market+Forecasts-p-9781119990727
Markowitz, H. (1952). Portfolio selection. The Journal of Finance,7(1),77–91.https://doi.org/10.2307/2975974
Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum. Journal of Financial Economics,104(2),228–250. https://doi.org/10.1016/j.jfineco.2011.11.003
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance,19(3),425–442. https://doi.org/10.2307/2977928
Sullivan, R., Timmermann, A., & White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. The Journal of Finance,54(5),1647–1691.https://www.jstor.org/stable/222500