簡易檢索 / 詳目顯示

研究生: 葉雨柔
Ye, Yu-Rou
論文名稱: 防禦型資產配置策略於全球、美國及台灣ETF市場多元化投資績效之分析
Performance Analysis of Diversified Investments Using a Defensive Asset Allocation (DAA) Strategy Across Global, U.S., and Taiwan ETF Markets
指導教授: 顏盟峯
Yen, Meng-Feng
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 64
中文關鍵詞: 防禦型資產配置動能投資定期定額交易成本全球市場
外文關鍵詞: Defensive Asset Allocation, Momentum Investment, Dollar-Cost Averaging, Transaction Costs, Global Market
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討防禦型資產配置策略(Defensive Asset Allocation, DAA)於多元市場情境下之實務可行性與穩健性表現。藉由動能因子與風險濾網結合,設計三種策略版本(Base、T2、G4),並與傳統均權重配置(Equal Weight, EW)及全球市場代表性「Vanguard全世界股票ETF(VT)」進行績效比較,透過歷史回測方式評估策略在不同操作條件下之報酬性與風險控制能力。
    實證內容涵蓋三大情境:不考慮交易成本、納入平均交易成本後,以及定期定額投資模式。研究期間橫跨2010年至2025年,涵蓋疫情、升息循環等多次重大金融事件,以提高樣本期間之代表性與策略穩健性檢驗力度。回測指標涵蓋年化報酬率、年化波動率、夏普值、最大回撤與卡瑪比率等五項核心指標,並進行多維度交叉比較。
    實證結果顯示,DAA策略於大多數情境下在報酬表現方面不如VT與EW,特別是在納入交易成本後,T2與G4版本因再平衡頻率高、成本敏感性強,導致績效明顯下滑;且在極端市場下,其最大回撤亦未優於傳統策略,顯示防禦性表現仍有提升空間。然而,Base版本於波動控制方面表現穩健,整體風險輪廓平衡,為三版本中表現最穩定者。
    在定期定額情境中,DAA三版本累積市值普遍低於VT與EW,但報酬波動幅度較小(G4除外),能提供長期投資者另一種風險控制導向的選擇。整體而言,DAA策略雖未於所有面向優於傳統配置模式,但其策略架構於風險抑制與資產配置彈性上具備潛力。未來可進一步優化參數設計、擴充資產池,並導入動態再平衡機制,以提升策略之應用價值與調適能力。

    This study evaluates the feasibility and robustness of the Defensive Asset Allocation (DAA) strategy under diverse market conditions. By incorporating momentum signals and risk filters, three versions of the DAA model—Base, T2, and G4—are constructed and benchmarked against traditional strategies, including Equal Weight (EW) and the global ETF proxy (VT). Historical backtesting is conducted to evaluate the performance and risk management of the strategy under various implementation frameworks.
    The empirical design covers three scenarios: excluding transaction costs, incorporating average transaction costs, and applying a dollar-cost averaging (DCA) investment approach. The sample period spans from 2011 to 2025, encompassing major market events such as the COVID-19 pandemic and the global interest rate hike cycle. Performance is evaluated using annualized return, annualized volatility, Sharpe ratio, maximum drawdown, and return-to-drawdown ratio.
    Results show that DAA strategies generally underperform EW and VT in terms of overall return, especially after accounting for transaction costs. The T2 and G4 versions are particularly affected due to their higher rebalancing frequency. Additionally, the maximum drawdowns of DAA strategies are not consistently better than those of traditional approaches, suggesting room for improvement in managing downside risk. Nonetheless, the Base version exhibits relatively stable volatility and balanced risk characteristics across scenarios, indicating potential suitability for risk-averse investors.
    Under the DCA framework, all DAA models show lower portfolio volatility but accumulate less wealth than EW and VT over the long term. Overall, while DAA strategies do not outperform traditional methods across all dimensions, they offer structural flexibility and moderate control over volatility. Future research may focus on dynamic parameter optimization, expanding the asset universe, and implementing condition-based rebalancing mechanisms to enhance the DAA model’s practical adaptability in evolving market environments.

    中文摘要 I ABSTRACT II 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章、緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究架構 5 第二章、文獻回顧 7 第一節 資產配置策略的相關研究 7 第二節 動能策略的相關研究 9 第三節 風險控制與防禦性配置相關文獻 10 第四節 多元化投資與基準策略比較 12 第五節 再平衡策略之理論與應用研究 14 第三章、研究方法 16 第一節 樣本資料來源及選取 16 第二節 樣本選取期間 19 第三節 DAA策略 21 第四章、實證結果 25 第一節 資產績效評估指標 25 第二節 未考量交易成本之投資組合績效比較 26 第三節 考量交易成本之投資組合績效比較 28 第四節 定期定額(DCA)策略之實證分析 31 第五章、結論與建議 38 第一節 研究結論 38 第二節 研究限制與建議 40 參考文獻 44

    朱柏樺(2016)。應用EAA模型於中國大陸、香港與台灣證券市場,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/8zx33f
    林佳儒(2024)。應用大膽資產配置 ( BAA ) 策略於中國、香港及台灣金融市場,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/8dfgsa
    林鈺晉(2024)。美國及台灣市場之動態資產配置策略,國立臺灣大學財務金融研究所碩士論文。https://hdl.handle.net/11296/84w9zx
    邱毅翔(2013)。動態資產配置策略與績效之分析,逢甲大學金融碩士在職專班碩士論文。https://hdl.handle.net/11296/v279fk
    翁靖雅(2021)。再平衡資產配置策略之實證研究,國立清華大學財務金融碩士在職專班碩士論文。https://hdl.handle.net/11296/zx8pv
    黃信勝(2017)。探討防禦型資產配置模型應用於美國股票指數基金的績效,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/wn32xq
    簡祥軒(2025)。防禦型資產配置策略於新興市場之應用與實證研究,國立成功大學財務金融研究所碩士論文。https://hdl.handle.net/11296/878xf6
    簡溢伶(2024)。ETF投資組合之多元資產配置與權重最適化探討,國立政治大學國際金融碩士學位學程碩士論文。https://hdl.handle.net/11296/y6548k
    Asness, C. S., Frazzini, A., & Pedersen, L. H. (2013). Quality minus junk. AQR Capital Management Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2312432
    Arnott, R. D., Sherrerd, K. F., & Wu, L. J. (2013). The Glidepath Illusion...And Potential Solutions. Journal of Retirement, 1(2), 13–28. https://ssrn.com/abstract=2326774
    Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross‐section of expected returns. Journal of Financial Economics,99(2),427–446。https://doi.org/10.1016/j.jfineco.2010.08.014
    Barroso, P., & Santa-Clara, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111–120. https://doi.org/10.1016/j.jfineco.2014.11.010
    Bellu, M., & Conversano, C. (2020). Protected adaptive asset allocation, Finance Research Letters, 32, 101095. https://doi.org/10.1016/j.frl.2019.01.007.
    Chan, L. K. C., Jegadeesh, N., & Lakonishok, J. (1996). Momentum strategies. The Journal of Finance, 51(5), 1681–1713. https://doi.org/10.1111/j.1540-6261.1996.tb05222.x
    Carlson, T.(2025a). Tactical allocation for vanguard investors: A defensive strategy for retirement portfolios. https://dx.doi.org/10.2139/ssrn.5369659
    Carlson, T.(2025b). Defense first: A multi-asset tactical model for adaptive downside protection. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5334772
    Chaves, D. B.(2012)Eureka! A momentum strategy that also works in Japan.https://dx.doi.org/10.2139/ssrn.1982100
    DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953. https://doi.org/10.1093/rfs/hhm075
    Dichtl, H., Drobetz, W., & Wambach, M. (2014). Testing rebalancing strategies for stock-bond portfolios across different asset allocations. https://dx.doi.org/10.2139/ssrn.2479384
    Flint, E., Chikurunhe, F., & van Schaik, L. (2025). Hedging on a global scale: managing currency and asset risk jointly. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5284212
    Geczy, C., & Samonov, M.(2017)Two centuries of multi-asset momentum (equities, bonds, currencies, commodities, sectors and stocks) https://dx.doi.org/10.2139/ssrn.2607730
    Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance,48(1),65–91.https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
    Keller, W., & Putten H. v. (2012). Generalized momentum and flexible asset allocation (FAA): A Heuristic Approach. https://dx.doi.org/10.2139/ssrn.2193735
    Keller, W. J., & Butler A. (2014). A Century of Generalized Momentum; From flexible asset allocations to elastic asset allocation (EAA). https://dx.doi.org/10.2139/ssrn.2543979
    Keller, W. J., Butler A., Kipnis I. (2015). Momentum and Markowitz: A golden combination. https://dx.doi.org/10.2139/ssrn.2606884
    Keller, W. J., & Keuning, J. W. (2016). Protective asset allocation (PAA).https://dx.doi.org/10.2139/ssrn.2759734
    Keller, W. J., & Keuning, J. W. (2017). Vigilant asset allocation (VAA).https://dx.doi.org/10.2139/ssrn.3002624
    Keller, W. J., & Keuning, J. W. (2018). Breadth momentum and the canary universe: Defensive asset allocation (DAA). https://dx.doi.org/10.2139/ssrn.3212862
    Keller, W. J. (2019). Lethargic asset allocation (LAA). https://dx.doi.org/10.2139/ssrn.3498092
    Keller, W. J. (2020). Resilient asset allocation (RAA). https://dx.doi.org/10.2139/ssrn.3752294
    Keller, W. J. (2022). Relative and absolute momentum in times of rising/low yields: Bold Asset Allocation (BAA). https://dx.doi.org/10.2139/ssrn.4166845
    Keller, W. J., & Keuning, J. W. (2023). Dual and canary momentum with rising yields/inflation: Hybrid asset allocation (HAA). https://dx.doi.org/10.2139/ssrn.4346906
    Ilmanen, A. (2011). Expected returns: An investor's guide to harvesting market rewards. Wiley Finance. https://www.wiley.com/en-us/Expected+Returns%3A+An+Investor%27s+Guide+to+Market+Forecasts-p-9781119990727
    Markowitz, H. (1952). Portfolio selection. The Journal of Finance,7(1),77–91.https://doi.org/10.2307/2975974
    Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum. Journal of Financial Economics,104(2),228–250. https://doi.org/10.1016/j.jfineco.2011.11.003
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance,19(3),425–442. https://doi.org/10.2307/2977928
    Sullivan, R., Timmermann, A., & White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. The Journal of Finance,54(5),1647–1691.https://www.jstor.org/stable/222500

    QR CODE